

Avalanche Photodiodes at ESRF

Instrument Support Group, Experiments Division

1

APD History:

At ESRF, ~50 Nal, YAP -PMT scintillation counters for diffraction, scattering and beam monitoring applications

These are limited to $<10^5$... 10^6 cps,

WIDESPREAD DEMAND FOR A FASTER COUNTER

Silicon APDs used since ~1993 (A. Baron et al.) for Mossbauer experiments with <nanosec timing resolution

Il Could also be used as a fast counter (> 10⁷ cps), but devices difficult/impossible to use for non-specialist users:

- array of NIM modules,
- need for fast oscilloscope
- sensitive manual adjustments (HT bias, etc...)

"Reach-through" avalanche photodiode*

*see Webb, McIntyre, Conradi RCA Rev 35 1974

Extremely robust devices Thin , high field, 'dead layer' p+ entrance

Available commercially (infrared ranging market)

number of electron-hole pairs for a 5.9keV photon is = 5900/3.62 =1630

Charge collected in ~1ns, gives a current pulse ~260nA, or 13µV into a 500' load !!

'white' amplifier noise too high for a fast counter (~500MHz bandwidth)

=> need detector 'internal gain'

For hard X ray detection, APD is used in semi-proportional gain mode, NOT as an avalanche counter

=> energy resolution possible

Gain

•increases logarithmically with voltage bias

•decreases with rising temperature For constant gain, need compensation $\Delta V = 1.33\%$ /°C (gain = 100)

 ΔV = 0.65% /°C (gain = 20)

...and 'Speed'

Specifications for a fast Silicon Avalanche Photodiode counter:

• Energy range < 3 keV (preamp noise threshold limit)

up to Si absorption limit ~ 30keV

- Counting rate > 10⁷ cps
- Time resolution < 1ns (silicon interaction depth-drift time limit)
- Dark noise < 0.1 cps
- Energy resolution ~ 20 %

(separate of fluorescence and elastic scatter)

- EASY TO USE, COMPLETE HARD- SOFTWARE SYSTEM
- AVAI LABLE TO ALL USERS AT AT ESRF AND BEYOND

(36 APD heads and 26 ACE modules)

ESRF APD system

APD head /preamplifier

Hamamatsu 5*3mm² thickness 135µm (absorption 45% at 12 keV)

or

Perkin-Elmer 5*5 and 10*10mm2 thickness 110µfm (215µfm)

Controller, timer-scaler, power supply

ESRF Heads

Pekin-Elmer 10*10mm2 thickness 110µm (215µm) Transmission mode Hamamatsu 5*3mm² thickness 135µm (absorption 45% at 12 keV) and Perkin-Elmer 5*5 thickness 110um

- •Low noise 3 stage amplifier mmic (Agilent) ~ 500MHz BW
- •Thermally stable (temperature feedback stabilization possible)
- •Compact (<300mW)
- •Compatible with Perkin-Elmer and Hamamatsu APDs (15... 120pF)
- •STABLE AGAI NST OSCI LLATON !!

APD Controller Electronics NIM unit: signal processing

Base line restoration to remove AC coupling offsets.

- Double (window) discriminators
- Fixed dead time generator.

Pulse Pile-up and base line restoration

RF preamp stages are a-c coupled, so 'average baseline' evolves with X-ray count rate

Schottky diode (non-linear) baseline restorer:

ACE (APD Controller Electronics) NIM unit

•Internal counter, 100MHz (180MHz / 10 pulse burst rate)

•External event synchronization : Trigger and gate input-output, direct SCA outputs (TTL and NIM)

•Energy Spectrum inspection by DAC controlled window discriminator scan

- •bias current measurement for count saturation indicator and overload safety-- passive load plus HV feedback adjust
- •Local control/display by graphic LCD with touch panel.
- •Beamline remote control and data acquisition ('SPEC' software) via RS232/422 or GPIB.

(APD temperature measurement for gain compensation and device safety)

ESRF APD System: Count rate performance

ESRF uniform fill mode I D2 beamline tests at 12.5 keV Hamamatsu 5x3mm² APD, nonparalyzable model fit

Energy resolution vs Gain

APD EGG 5x5 110um No1 Source Fe55

Energy resolution vs Gain APD EGG 5x5 110u No 1 Source Cd109

(bis)

Cd-109 22/25keV

The energy resolution (FWHM) versus bias voltage is: Bias = 380V Energy resolution = no measurement (saturation of input) Bias = 360V Energy resolution = 26.6% Bias = 340V Energy resolution = 24% Bias = 310V Energy resolution = 22% Bias = 280V Energy resolution = 18.5% Bias = 240V Energy resolution = 17% (optimal value for 22Kev) Bias = 200V Energy resolution = 20% Energy resolution vs. (Output) Count Rate

Commercialisation

-Licensing agreement between ESRF and Cyberstar (Oxford Danfysik catalogue distribution)

- NSLS (Brookhaven) basic NIM module, also produced by Cyberstar for Oxford Danfysik

Comparison of APD to YAP and Nal scintillator.

	Nal(TI)	YAP:Ce	APD
Active area	5cm ²	5cm ²	0.15 -1cm ²
Energy range	5keV	560keV	330keV
Energy resolution @ 22keV	28%	56%	20-30%
Dynamic with dead time correction	400Khz	3Mhz	50Mhz
Dead time	1µs	0.11µs	0.006 µs
Linearity @ 1% dead time	10K	100khz	2Mhz
Linearity @ 5% dead time	50K	450khz	9Mhz

beamline I D31

ESRF beamline I D31 (A Fitch) Nine-channel multianalyser stage: J.-L. Hodeau, M. Anne, P. Bordet, A. Prat, CNRS-Grenoble.

...Resolution...

C30626 , Fe-55 source (Mn K $_{\alpha .}$ at 5.9, 6.4keV)

Resolution is dependent upon

Fano statistics of photon absorption (~photon energy^{1/2})
Multiplication noise (~APD internal gain²)
preamplifier noise (~bandwidth^{1/2})

Future?

- APD arrays and telescopes

- custom head packaging (vacuum, cryogenic...?)

- faster counting --> 350 MHz 'ESRF machine limit'