Théorie des multiplets appliquée à la spectroscopie d'absorption X

Marie-Anne Arrio

Institut de Minéralogie et Physique des Milieux Condensés, Paris

Amélie Bordage

Institut de Chimie Moléculaire et des Matériaux d'Orsay, Orsay

Comprendre le monde, construire l'avenir®

- **1. Définition des seuils**
- 2. Que peut on extraire d'un spectre sans calcul?
- 3. Quelle théorie appliquer à quel seuil?
- 4. Théorie des multiplets en champ cristallin
- 5. Les codes de calcul
- 6. Exemples

1. Définition des seuils

- 2. Que peut on extraire d'un spectre sans calcul?
- 3. Quelle théorie appliquer à quel seuil?
- 4. Théorie des multiplets en champ cristallin
- 5. Les codes de calcul
- 6. Exemples

Seuils et règles de sélection

Règles de sélection

Dipolaire électrique $\Delta \ell = \pm 1$ Quadripolaire électrique $\Delta \ell = 0, \pm 2$ On peut exciter différents
 électrons de cœur (1s, 2s, 2p,...)

Seuil K Fe = 7112 eV Seuil L₂ Fe = 649.9 eV

- L'essentiel de l'absorption est dû aux transitions dipolaires électriques : s→p, p→d
- Seuils K: Contributions des transitions quadrupolaires (s→d) dans le préseuil

A quels seuils utiliser les multiplets?

✓ Seuils $L_{2,3}$ des ions de transition 3d (ou 4d)

Transitions $2p \rightarrow 3d$

✓ Pré-seuil K des ions de transition 3d (ou 4d)
Transitions 1s → 3d
1s → 4p(hybridé aux 3d)

✓ Seuils $M_{4,5}$ des ions terre-rare Transitions 3d → 4f

Dans le cours, nous aborderons :

- les seuils L_{2,3} des ions 3d, courraments interprétés dans l'approche multiplets (mais non mesurable sur FAME)
- Les pre-seuils K des ions de transition 3d (mesurables sur FAME)

Absorption X au seuil K

Absorption aux seuils L_{2,3}

RXES au préseuil K

Resonant X-ray Emission Spectroscopy (ou RIXS: Resonant Inelastic X-ray Scattering)

> On sonde les mêmes états qu'aux seuils L_{2,3} mais avec des rayons X durs ⇒ Informations sur les états 3d

- Résolution améliorée pour les préseuils K (coupe dans le plan RXES)
- Utilisation d'un spectromètre à cristaux analyseurs

Glatzel and Bergmann (2005) Coord. Chem. Rev 249:65-95

FAME 2014

1. Définition des seuils

2. Que peut on extraire d'un spectre sans calcul?

- 3. Quelle théorie appliquer à quel seuil?
- 4. Théorie des multiplets en champ cristallin
- 5. Les codes de calcul
- 6. Exemples

Le degré d'oxydation

La symétrie locale

Calculs nécessaires aux seuils L_{2.3}

Signature de la symétrie tétraédrique

- **1.** Définition des seuils
- 2. Que peut on extraire d'un spectre sans calcul?

3. Quelle théorie appliquer à quel seuil?

- 4. Théorie des multiplets en champ cristallin
- 5. Les codes de calcul
- 6. Exemples

Deux approches

MONOELECTRONIQUE

(Yves Joly)

- Calcul de physique du solide
 on considère tout le cristal
- Transitions vers des niveaux délocalisés
 Peu d'interactions entre électrons
- Seul l'électron éjecté est explicitement pris en compte dans le calcul
- Density Functional Theory
 - Calcul dans l'espace réciproque
 - toute la maille
 - Calcul *ab initio*

 Spectre XANES (préseuil+seuil) au seuil K, plans RXES/RIXS

MULTIELECTRONIQUE (Nous)

- Calcul de physique atomique on considère l'ion
- Transitions vers des niveaux localisés
 Forte interactions entre électrons
- Les électrons des couches de départ et d'arrivée sont pris en compte dans le calcul
- Ligand Field Multiplet Theory
 - Calcul dans l'espace réel
 - Seul l'ion et ses ligands
 - Calcul paramètré
- Spectre XANES aux seuils L_{2,3}, préseuil K, spectre d'émission des rayons X, plans RXES/RIXS

Qu'est ce qu'un niveau localisé : Orbitales localisées

Interaction électrons-électrons

- $E_f E_{1s}$ grande
 - ⇒ Pas d'interaction avec les électrons de cœur
- Transitions vers des niveaux vides
 ⇒ Faibles interactions entre
 - ⇒ Faibles interactions entr l'électron éjecté et les autres

- *E*_{3d}−*E*_{2P} petite
 ⇒ Répulsions entre électrons des couches 2p et 3d
- Transitions vers des niveaux partiellement remplis
 - ⇒ Répulsions entre électrons 3d

Quelle théorie pour quel seuil?

Cas intermédiaires

Seuils L_{2,3} des métaux de transition (sous forme métallique)
 ⇒ Transitions 2p → 3d MAIS 3d métal = bande délocalisée

Préseuil K des ions de transition 3d

⇒ Transitions vers des états localisés 1s → 3d et 1s → 4p(hybridé aux 3d)

Energie (eV)

Les deux modèles (monoélectronique, multiélectronique) sont utilisables mais avec des modifications

ATTENTION

- Les multiplets ne peuvent calculer **<u>que</u>** la zone du pré-seuill K
- Les méthodes monoélectroniques peuvent calculer le seuil K <u>et</u> le préseuil mais avec peut-être moins de précision sur les transition 1s → 3d s'il y a plusieurs électrons dans la couche 3d

A quels seuils utiliser les multiplets?

✓ Seuils $L_{2,3}$ des ions de transition 3d (ou 4d) Transitions 2p→ 3d

✓ Pré-seuil K des ions de transition 3d (ou 4d) Transitions 1s → 3d 1s → 4p(hybridé aux 3d)

✓ Seuils M_{4,5} des ions terre-rare
 Transitions 3d → 4f

De manière plus générale, il faut utiliser les multiplets pour les systèmes avec de fortes répulsions électroniques (qui ne sont pas suffisamment prises en compte dans les méthodes monoélectroniques

- **1.** Définition des seuils
- 2. Que peut on extraire d'un spectre sans calcul?
- 3. Quelle théorie appliquer à quel seuil?

4. Théorie des multiplets en champ cristallin

- 5. Les codes de calcul
- 6. Exemples

Section efficace d'absorption: Règle d'or de Fermi-Dirac

Quelque soit le modèle, le but est de calculer le spectre donné par la section efficace d'absorption des rayons X :

$$\sigma(\hbar\omega) = 4\pi^2 \alpha \hbar\omega \sum_{i,f} \frac{1}{d_i} \left| \left\langle f \left| O_{int} \right| i \right\rangle \right|^2 \delta(E_f - E_i - \hbar\omega)$$

- $\hbar\omega$ énergie des photons incidents
- |i> état initial de l'ion
- d_i la dégénérescence de l'état initial
- |f> état final de l'ion
- $\delta(E_f E_i \hbar \omega)$ fonction de Dirac qui assure la conservation de l'énergie
- O_{int} Hamiltonien d'interaction RX-matière

Ce que fait le calcul

1) Détermination des **états** | **i** > **et** | **f** > ainsi que leurs énergies E_i et E_f en résolvant les équation de Schrödinger :

 $H_{ion}|i\rangle = E_i|i\rangle$ $H_{ion}|f\rangle = E_f|f\rangle$

2) Calcul des transitions discrètes $|i\rangle \rightarrow |f\rangle$ d'intensité $\left|\left\langle f | O | i \right\rangle\right|^2$ à l'énergie $E_{f} - E_{i}$

a renergie
$$E_f$$

avec $\begin{bmatrix} \text{transitions discretes } | \mathbf{i} > \rightarrow | \mathbf{i} > \text{diffensite} \\ \mathbf{i} > \mathbf{i}$

Les transitions dans le préseuil K

- <u>Quelque soit la symétrie locale</u> (O_h ou Td), on calcule le quadrupolaire électrique $1s^23d^n \rightarrow 1s^13d^{n+1}$
- Pour un ion dans un site non-centrosymétrique (T_d) , on calcule en plus le dipolaire électrique $1s^23d^n \rightarrow 1s^13d^np^1$ (hybridation p-d)

Calcul de |i> et |f> : Hamiltonien multielectronique

Les états de l'ion : Qu'est-ce qu'un multiplet?

Multiplet = Etats multiélectroniques qui peuvent être dégénérés (singulet, doublet, triplet...)

On parle de configurations électroniques

- Seuils L_{2,3} des éléments de transition 3d Configuration initiale : 1s² 2s² 2p⁶ 3s² 3p⁶ 3dⁿ Configuration finale : 1s² 2s² 2p⁵ 3s² 3p⁶ 3dⁿ⁺¹
- Seuils K des éléments de transition 3d Configuration initiale : 1s² 2s² 2p⁶ 3s² 3p⁶ 3dⁿ Configuration finale : 1s¹ 2s² 2p⁵ 3s² 3p⁶ 3dⁿ⁺¹

L'ensemble des états possibles est décrit par un terme spectroscopique

Nombres d'états |i> et |f> : Exemple des seuils L_{2.3} de l'ion Cr⁴⁺

Etat initial $1s^2 2s^2 2p^6 3s^2 3p^6 3d^2 = 20$ électrons

Couche $3d^2$ $\ell = 2$ $2\ell + 1 = 5$ fonctions angulaires s = 1/2 2s+1 = 2 fonctions de spin ou On utilise les probabilités combinatoires $C_n^p = \frac{n!}{p!(n-p)!}$ **Etat final** 1s² 2s² 2p⁵ 3s² 3p⁶ 3d³ couche $2p^5$ $\ell = 1$ 3 fonctions angulaires s = 1/2 2 fonctions de spin $C^{1}_{6} = 6$ états possibles $C^{1}_{6} \times C^{3}_{10} = 720$ états $C_{10}^3 = 120$ états possibles 2couche 3d³

Terme spectroscopique

Chaque état est déterminé par L, S et J :

$$\mathbf{L} = \sum_{i=1}^{N} \ell_{i} \qquad (\ell_{i} \text{ moment orbital de l'électron i})$$
$$\mathbf{S} = \sum_{i=1}^{N} \mathbf{s}_{i} \qquad (\mathbf{s}_{i} \text{ moment orbital de l'électron i})$$

J = L + S : J opérateur de couplage spin-orbite, avec $|L-S| \le J \le L+S$

Les répulsions électroniques

Répulsions électroniques

Calcul de |i> et |f> : Hamiltonien multielectronique

Effet de la symétrie locale : Champ cristallin

Effet de la symétrie locale : Champ cristallin

Orbitales 3d, symétrie et champ cristallin

FAME 2014

Effet du champ cristallin sur un ion dⁿ

Passage de transitions discrètes à un spectre

On convolue les transitions discrètes par une lorentzienne (largeur du trou de cœur) et une gaussienne (résolution expérimentale)

Petit résumé no.1 : Les étapes du calcul

Petit résumé no.2 : les paramètres du calcul

- **1.** Définition des seuils
- 2. Que peut on extraire d'un spectre sans calcul?
- 3. Quelle théorie appliquer à quel seuil?
- 4. Théorie des multiplets en champ cristallin

5. Les codes de calcul

6. Exemples

La théorie adaptée à l'absorption X

Robert **Cowan** : Théorie atomique

Hamiltonien de symétrie sphérique à l'exception d'un éventuel champ électrique ou magnétique externe (TTRCG)

> Philip **Buttler** : Champ cristallin

Symétrie du groupe ponctuel de l'ion (TTRAC)

Philip Anderson : Mélange de configurations (BANDER)

Adaptation à l'absorption X : Theo Thole

Les interfaces « user friendly »

MISSING

Riccardo Gusmeroli et Claudia Dallera

http://www.esrf.eu/computing/scientific/MISSING/

On a accès directement aux fichiers-sources (flexibilité) mais il manque la partie convolution

CTM4XAS (Charge Transfer Multiplet for X-ray Absorption Spectroscopy)

Frank de Groot et Eli Stavitski

http://www.anorg.chem.uu.nl/CTM4XAS

Stavitski and de Groot, (2010) Micron 41:687-694

L'interface est intuitive mais il est un peu "boîte noire"

1. Définition des seuils

- 2. Que peut on extraire d'un spectre sans calcul?
- 3. Quelle théorie appliquer à quel seuil?
- 4. Théorie des multiplets en champ cristallin
- 5. Les codes de calcul

6. Exemples

Exemple 1 : Dosage Fe^{II}/Fe^{III} dans les minéraux

Wilke et al. (2001) American Mineralogist 86: 714-730

Exemple 1 : Dosage Fe^{II}/Fe^{III} dans les minéraux

Exemple 2 : Transitions électroniques dans un complexe de Co

Poneti et al. (2009) ChemPhysChem 10 : 2090-2095

Exemple 2 : Transitions électroniques dans un complexe de Co

Co^{III} : 1s²3d⁷ → 1s¹3d⁸Co^{IIII} : 1s²3d⁶ → 1s¹3d⁷

Symétrie octaédrique

Variation du champ cristallin (10Dq):

<u>faible</u> pour <u>haut spin</u> <u>fort pour bas spin</u>

FAME 2014

Exemple 3 : Dépendance angulaire du préseuil K

Juhin et al. (2008) Physical Review B 78:195103

Dans les préseuils K, pour un monocristal, on observe une dépendance angulaire du spectre. Peut-on reproduire et interpréter cette dépendance angulaire?

