Spectroscopie d'absorption des rayons X

XAS : X-ray Absorption Spectroscopy

XAFS : X-ray Absorption Fine Structure

Manuel Muñoz FAME+ 2014

1 - Principes

Interaction Rayonnement-Matière

Relation d'Einstein
$$E = h\nu = \frac{hc}{\lambda}$$

avec :

Constante de Planck : $h = 6,62606957 \times 10^{-34} \text{ m}^2\text{kg/s}$

Célérité de la lumière : c = 299 792 458 m/s

```
et quelques ordres de grandeur :

5\ 000\ eV = 0.247\ nm

7\ 000\ eV = 0.177\ nm

10\ 000\ eV = 0.124\ nm

15\ 000\ eV = 0.083\ nm

20\ 000\ eV = 0.062\ nm
```

longueurs d'onde visible : 380 nm (violet) - 750 nm (rouge)

1			Méta Méta	aux alca aux alca	alins alino–te	rreux		Halog Gaz r	gènes rares									18
Н	2	Métaux de transition						Lanthanides					13	14	15	16	17	Не
³ Li	⁴ Be	Métalloïdes											5 B	⁶ C	7 N	⁸ 0	9 F	¹⁰ Ne
¹¹ Na	12 Mg	3	NOI	-metau 4	^ 5	6	7	8	9	10	11	12	13 Al	¹⁴ Si	15 P	16 S	17 Cl	¹⁸ Ar
19 K	20 Ca	21 Sc		22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	³² Ge	33 As	34 Se	35 Br	36 Kr
³⁷ Rb	38 Sr	39 Y	ĺ	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe
55 Cs	56 Ba	57 La		72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
⁸⁷ Fr	⁸⁸ Ra	89 Ac		104 Rf	105 Db	¹⁰⁶ Sg	¹⁰⁷ Bh	¹⁰⁸ Hs	109 Mt	110 Ds	¹¹¹ Rg	¹¹² Cn	113 Uut	114 Uuq	115 Uup	116 Uuh	117 Uus	¹¹⁸ Uuo

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
90	91	92	93	94	95	96	97	98	99	100	¹⁰¹	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Energie de liaison : énergie nécessaire pour dissocier un système de particules en interaction

		Energie de liaison (eV)										
Label	spin-orbite (ls)	Н	Li	Na	К	Rb	Cs					
K	ls	13.6	54.7	1070.8	3608.4	I 5200	35985					
L-I	2s			63.5	378.6	2065	5714					
L-II	2p 1/2			30.4	297.3	1864	5359					
L-III	2p 3/2			30.5	294.6	1804	5012					
M-I	3s				34.8	326.7	1211					
M-II	3p 1/2				18.3	248.7	1071					
M-III	3p 3/2				18.3	239.I	1003					
M-IV	3d 3/2					113	740.5					
M-V	3d 5/2					112	726.6					
N-I	4s					30.5	232.3					

Etude de la structure fine de l'absorption près du seuil =>

- § Nécessité d'une résolution << eV
- § Nécessité d'une forte intensité pour obtenir un rapport signal/bruit satisfaisant
- § Nécessité d'utiliser le synchrotron

2 - Mesures

Rayonnement synchrotron

European Synchrotron Radiation Facility (ESRF, Grenoble) 1994 - 6 GeV

Advanced Photon Source (APS, Chicago) 1993 - 7 GeV

SOLEIL (Gif-sur-Yvette) 2006 - 3 GeV

ALBA (Barcelone) 2012 - 3 GeV

Wigglers - Onduleurs (undulators) : différentes périodes d'oscillation

Onduleur

Aimant de courbure

Wiggler

Emission de radiation synchrotron en fonction de l'énergie du faisceau d'électron

Représentation schématique du rayonnement synchrotron polychromatique selon le type de source

Exemples de différentes sources de rayonnement

Monochromateurs à deux cristaux

Distances réticulaires

Monochromateur 2 cristaux

Polychromateur dispersif

Si(111) => "flux"
Si(220) => intermédiaire
Si(311) => "résolution"
Autres types de cristaux pour les X « mous » (faible énergie)

Monochromateur 2 cristaux Polychromateur dispersif

Si(111) => "flux"
Si(220) => intermédiaire
Si(311) => "résolution"
Autres types de cristaux pour les X « mous » (faible énergie)

Coefficient d'absorption linéaire (loi de Beer-Lambert)

Définition de l'absorbance $A = \log\left(\frac{I_0}{I}\right)$

Propriété d'additivité de la loi de Beer-Lambert

$$A = \sum_{i=1}^{n} A_i \left(x_i \cdot C_i \right)$$

À une longueur d'onde donnée λ , l'absorbance A d'un mélange de *n* espèces absorbantes est la somme des absorbances individuelles

Spectre d'absorption

3 - Spectres XANES

(X-ray Absorption Near Edge Structure)

1 - Identification de phases signature spectrale complexe

approche théorique bien maîtrisée

2 - Caractérisation de l'état d'oxydation qualitatif ou quantitatif, selon les cas

3 - Mesure de densité

utilisation du coefficient d'absorption massique

 $\frac{\mu(E)}{\rho} = \sum_{j} g_{j} \cdot \left[\frac{\mu}{\rho} \right]_{j} (E)$

4 - Prépics

lère série des métaux de transition uniquement
Spectre d'absorption

Sonde des orbitales de valence partiellement remplies

Diminution de l'intensité du pre-pic avec le remplissage de l'orbitale 3d

1	1	-				F	orob	abilit	é de	trar	nsitic	on						18
Н	2	$I_s \rightarrow 3d$												14	15	16	17	He
³ Li	⁴ Be							5 B	6 C	7 N	8 0	9 F	10 Ne					
11 Na	12 Mg	3		4	5	6	7	8	9	10	11	12	13 Al	14 Si	15 P	16 S	17 Cl	¹⁸ Ar
19 K	20 Ca	21 Sc		22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	³¹ Ga	³² Ge	33 As	³⁴ Se	35 Br	36 Kr
37 Rb	³⁸ Sr	39 Y		40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe
55 Cs	56 Ba	57 La	\square	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	⁸⁸ Ra	89 Ac		¹⁰⁴ Rf	¹⁰⁵ Db	¹⁰⁶ Sg	¹⁰⁷ Bh	¹⁰⁸ Hs	109 Mt	110 Ds	¹¹¹ Rg	¹¹² Cn	113 Uut	114 Uuq	115 Uup	¹¹⁶ Uuh	117 Uus	¹¹⁸ Uuo
				58	59	60	61	62	63	64	65	66	67	68	69	70	71	
				Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	
				90 Th	91 Pa	92 U	93 ND	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	¹⁰¹ Md	102 No	103 Lr	

Ti K-edge (Z = 22)

Ni K-edge (Z = 28)

Extraction du pré-pic

Détermination de la coordinence

Détermination de la coordinence et de la redox

exemple du fer

1 - Position du centroide

- caractérisation de l'état d'oxydation

2 - Aire intégrée

- mesure de la coordinence moyenne

5 - Spectres EXAFS

(Extended X-ray Absorption Fine Structure)

seuil K du nickel

Explications théoriques

I - L'atome excité émet un électron, ou onde photo-électrique (dualité onde-particule) sphérique.

2 - Cette onde est diffractée par les atomes environnant, qui, selon le principe de Huygens-Fresnel, vont émettre chacun une onde sphérique interférant avec l'onde incidente.

3 - Les figures d'interférence entre atomes vont varier en fonction de l'énergie du faisceau incident, faisant ainsi varier l'absorption.

4 - Ces figures d'interférences sont la source des structures oscillantes de l'EXAFS, qui dépendent de la nature des atomes voisins, de leur distance, de leur nombre, etc.

Absorbance

Spectre normalisé (soustraction du background)

Augmentation de l'amplitude

seuil K du nickel

Conversion énergie-vecteur d'onde signal multi-fréquence amorti

EXAFS : Formulation mathématique

Règle d'or de Fermi

$$\mu(E) \propto \left| \langle \Psi_{exc} | \varepsilon r | \Psi_{fond} \rangle \right|^2 \cdot N_{exc}(E) \cdot \delta \left(E_{fond} + h\nu - E_{exc} \right)$$

- Ψfond et Ψexc sont les fonctions d'onde de l'état fondamental et de l'état excité
- Efond et Eexc sont les énergies de l'état fondamental et de l'état excité
- ε.r représente l'opérateur de transition dipolaire (ε, vecteur polarisation ; r, variable d'espace)
- Nexc(E) représente les densités d'états vacants en fonction de l'énergie
- δ représente la distribution de Dirac traduisant la conservation d'énergie
- hν représente l'énergie du photon (h, constante de Planck ; ν, la fréquence du rayonnement)

Dans l'approximation de la <u>diffusion simple</u> et de <u>l'onde plane</u>,

la partie oscillante du coefficient d'absorption linéaire aux seuils K est alors donnée par :

$$\chi(k) \approx \frac{|f(k,\pi)|}{k} \int_{0}^{\infty} g(r) e^{-2r/\lambda(k)} \frac{\sin(2kr + \sum \phi(k))}{r^{2}} dr$$

- g(r) représente la fonction de distribution radiale, traduisant le paysage atomique local autour de l'atome sondé projeté à une dimension
- f(k,π) représente l'amplitude de rétrodiffusion de l'onde
- $\lambda(k)$ est le libre parcours moyen du photoélectron
- $\Sigma \phi(k)$ est la somme des déphasages du photoélectron introduits par l'atome excité et les atomes rétrodiffuseurs

Dans l'approximation harmonique, la fonction g(r) peut être considérée comme une distribution gaussienne des distances interatomiques.

Cependant, dans les systèmes désordonnés, d'autres modèles de type anharmonique peuvent êtres utilisés. La fonction de distribution radiale inclut alors les effets de désordre statique et thermique.

La formulation continue de l'EXAFS, pour un atome absorbeur *i*, présente alors une écriture discrète de la forme :

$$\chi(k) \approx \sum_{j} S_{i}(k) \frac{N_{j}}{kR_{j}^{2}} \Big| f_{j}(k,\pi) \Big| e^{-2\sigma_{j}^{2}k^{2}} e^{-2R_{j}/\lambda_{j}(k)} \sin\left(2kR_{j} + \phi_{i}(k) + \phi_{j}(k) + \phi_{anh}(k)\right)$$

- S_i(k) est un facteur d'échelle représentant le terme de réduction dû aux effets multi-électroniques.
- j est le nombre de couche d'atomes rétrodiffuseurs identiques
- N_j est le nombre de coordinence
- R_j est la distance moyenne entre l'atome excité et les atomes rétrodiffuseurs
- $f_j(k,\pi)$ est l'amplitude de rétrodiffusion de l'onde
- + σ^{2}_{j} est le facteur de Debye-Waller
- $\lambda_j(k)$ est le libre parcours moyen du photoélectron
- Φ_i(k) et Φ_j(k) représentent les déphasages introduits par les potentiels atomiques de l'atome central et des atomes rétrodiffusés
- Φ_{anh}(k) représente les contributions anharmoniques de déphasage liées à l'état de désordre structural et/ou thermiques du matériau étudié

 $\chi(k) \approx \sum_{i} S_{i}(k) \frac{N_{j}}{kR_{i}^{2}} \Big| f_{j}(k,\pi) \Big| e^{-2\sigma_{j}^{2}k^{2}} e^{-2R_{j}/\lambda_{j}(k)} \sin(2kR_{j} + \phi_{i}(k) + \phi_{j}(k) + \phi_{anh}(k)) \Big|$

Information pour chaque

"sphère de coordinence (j)"

I - Distances interatomiques

2 - Coordinence

3 - Debye-Waller (désordre structural et/ou thermique)

4 - Nature des ligands et atomes voisins

Effet des différents paramètres sur le spectre EXAFS

Signal sinusoidal

$$\chi(k) \approx \sum_{j} S_{i}(k) \frac{N_{j}}{kR_{j}^{2}} \Big| f_{j}(k,\pi) \Big| e^{-2\sigma_{j}^{2}k^{2}} e^{-2R_{j}/\lambda_{j}(k)} \sin(2kR_{j} + \phi_{i}(k) + \phi_{j}(k) + \phi_{anh}(k)) \Big|$$

Amortissement par exponentielle négative

Amplification du signal à grande valeur de k

$$\chi(k) \approx \sum_{j} S_{i}(k) \frac{N_{j}}{kR_{j}^{2}} \Big| f_{j}(k,\pi) \Big| e^{-2\sigma_{j}^{2}k^{2}} e^{-2R_{j}/\lambda_{j}(k)} \sin(2kR_{j} + \phi_{i}(k) + \phi_{j}(k) + \phi_{anh}(k)) \Big|$$

Effet de diminution de la coordinence

Effet de l'augmentation du Debye-Waller

$$\chi(k) \approx \sum_{j} S_{i}(k) \frac{N_{j}}{kR_{j}^{2}} \Big| f_{j}(k,\pi) \Big| e^{-2\sigma_{j}^{2}k^{2}} e^{-2R_{j}/\lambda_{j}(k)} \sin(2kR_{j} + \phi_{i}(k) + \phi_{j}(k) + \phi_{anh}(k)) \Big|$$

Diminution de la distance interatomique

Augmentation de la distance interatomique

$$\chi(k) \approx \sum_{j} S_{i}(k) \frac{N_{j}}{kR_{j}^{2}} \Big| f_{j}(k,\pi) \Big| e^{-2\sigma_{j}^{2}k^{2}} e^{-2R_{j}/\lambda_{j}(k)} \sin(2kR_{j} + \phi_{i}(k) + \phi_{j}(k) + \phi_{anh}(k)) \Big|$$

Effet de la composante anharmonique (cumulants)

Effets couplés : Debye-Waller et anharmonicité

$$\chi(k) \approx \sum_{j} S_{i}(k) \frac{N_{j}}{kR_{j}^{2}} \Big| f_{j}(k,\pi) \Big| e^{-2\sigma_{j}^{2}k^{2}} e^{-2R_{j}/\lambda_{j}(k)} \sin(2kR_{j} + \phi_{i}(k) + \phi_{j}(k) + \phi_{anh}(k)) \Big|$$

Signal EXAFS complet moins « lisible » Superpositions et interférences de plusieurs sinusoïdes amorties

6 - Analyse des spectres EXAFS

(Analyse par Transformée de Fourier)

 $\chi(k) \approx \sum_{i} S_{i}(k) \frac{N_{j}}{kR_{j}^{2}} \Big| f_{j}(k,\pi) \Big| e^{-2\sigma_{j}^{2}k^{2}} e^{-2R_{j}/\lambda_{j}(k)} \sin(2kR_{j} + \phi_{i}(k) + \phi_{j}(k) + \phi_{anh}(k)) \Big|$

$$\hat{\chi}(R') = \int_{0}^{+\infty} k^{x} \chi(k) F(k) e^{-2ikR'} dk$$

Cu_shells

کہ

 $k^2 \chi(k) (A^{-2})$

Cu_shells

کہ
Analyse par Transformée de Fourier

Paysage Atomique

Une analyse du signal : La transformée de Fourier...

$$\chi(k) \approx \sum_{j} S_{i}(k) \frac{N_{j}}{kR_{j}^{2}} \Big| f_{j}(k,\pi) \Big| e^{-2\sigma_{j}^{2}k^{2}} e^{-2R_{j}/\lambda_{j}(k)} \sin(2kR_{j} + \phi_{i}(k) + \phi_{j}(k) + \phi_{anh}(k)) \Big|$$

« Paysage atomique »

$$\hat{\chi}(R') = \int_{0}^{+\infty} k^{x} \chi(k) F(k) e^{-2ikR'} dk$$

Terme de phase

$$P = 2kR_j + \phi_i(k) + \phi_j(k) + \phi_{anh}(k)$$

Déphasage de rétrodiffusion

$$\phi_i(k) + \phi_j(k) <> \alpha k^2 + \beta k + \gamma$$

Formalisme anharmonique (théorie des cumulants)

$$\phi_{anh}(k) <> -\frac{4}{3}c_3k^3$$

Transformée de Fourier inverse...

$$\chi_j(k) = \frac{1}{\pi} \int_0^{+\infty} \hat{\chi}(R') F_j(k) e^{2iR'} dR'$$

$$\chi_j(k) = A_j(k) \sin(P_j(k))$$

EXAFS

- 1 Distance interatomique
 - 2 Coordinence
- 3 Facteur Debye-Waller
- 4 Paramètre anharmonique

5 - Nature des atomes voisins (à Z ± 10)

7 - Normalisation des spectres

Normalisation en 3 étapes

Extraction du spectre EXAFS

