Fluorescence haute résolution: cristaux analyseurs

Principe général

Trier les photons en E / λ

o Cristal analyseur: sélectivité
 optique △E~1-2eV

••• Pourquoi ?

Mesure « standard » Seuil L_3 Ce dans CeO₂

 $CeO_2 \rightarrow Ø7nm$

8% de Ce³⁺ \rightarrow 21% Ce_{surface}

Limite de la technique

- épaulement uniquement dû au Ce³⁺ ?
- sensibilité pour de faible taux de Ce³⁺ ?

Auffan et al., "DNA damage generated by redox processes occurring at the surface of cerium dioxide nanoparticles", *Nanotoxicology* **3** (2009) 161-171

Mesures en fluorescence: cristaux analyseurs

- Très bonne sélectivité des raies de fluorescence: on sépare 2 éléments voisins
- Pas de saturation due à une fluorescence « parasite »
- Amélioration de la résolution des spectres
- Bonne résolution
- Statistique de comptage optimale

Visible \rightarrow refraction

Pink Floyd et al., "The dark side of the Moon", EMI (1973) 43'

 $RX \rightarrow diffraction$

Fluorescence: émission isotrope Spectromètre: lentille Fluorescence collectée dans une fraction de l'espace

Principe général

Diffraction d'un cristal courbe

	résolution	statistique
pic de diffraction très fin		
pic de diffraction très intense		
mesure dans toutes les directions		
cristaux très grands		

Géométrie de mesure

Quizz: quel cristal?

Raie de fluorescence		Cristaux / angle de Bragg (°)						
type	énergie (keV)	Si(311)	Ge (331)	Si(331)	Ge(333)	Si(333)	Ge(440)	Si(440)
Τί Κα1	4.5122	57.04						
Ce Lα1	4.8402	51.46	80.70					
Τί Κβ1	4.9334	50.12	75.52					
V Kα1	4.9529	49.85	74.67					
Ce Lβ1	5.2620	46.01	65.20	71.01				
Cr Kα1	5.4149	44.36	61.90	66.76				
V Kβ1	5.4278	44.22	61.64	66.45				
Mn Kα1	5.8987	39.92	54.07	57.51	74.86			
Cr Kβ1	5.9468	39.54	53.444	56.79	73.24	85.88		
Fe Kα1	6.4038	36.24	48.23	50.98	62.77	67.85	75.47	
Mn Kβ1	6.4904	35.68	47.39	50.05	61.32	66.04	72.76	84.21
Co K α1	6.9303	33.11	43.57	45.88	55.25	58.85	63.44	68.71

• • • Quizz: quel rayon de courbure?

Raie	Cristal	0,5m	1m	1,5m	2m
Fe Kα1	Si(333)	0.47	0.82	0.95	0.98
Fe Kα1	Ge(440)	0.70	0.96	0.99	1.00
Co Κα1	Si(440)	0.47	0.82	0.95	0.98
Cu Kα1	Si(444)	0.87	0.99	1.00	1.00
Zn Kα1	Si(444)	0.45	0.80	0.94	0.98
Pt Lα1	Si(444)	0.28	0.55	0.76	0.89
Pt Lα1	Ge(660)	0.89	0.99	1.00	1.00
As Kα1	Ge(660)	0.33	0.63	0.84	0.93
As Kα1	Si(555)	0.48	0.83	0.95	0.98

Fraction du cristal en condition de Bragg pour un cristal de 100mm de diamètre

••• Quel rayon de courbure ?

fraction diffractée → R grand fraction du signal "vu" → R petit

Critère : flux diffracté • R=0.5m

- D = 1m
- R=1m

Critère : résolution • R=1m

• R=2m

Mesure de la résolution en énergie

- o Pourquoi?
 - Pour dire que l'on a une meilleure résolution que les voisins?
 - Parce que cela fait bien de le marquer dans la publi?
 - Parce que cela conditionne la qualité spectrale des données?
 - Parce que cela peut être un paramètre important lors des calculs XANES?

Mesure de la résolution en énergie

- o Comment?
 - En mesurant des photons d'énergie connue
 - faisceau diffusé élastiquement ("pic élastique") mais de manière anisotrope
 - raie de fluorescence, émis de manière isotrope
 - Par le calcul

Formalisme de Klein-Nishina

Mesure de la résolution en énergie: pic élastique ncident détecteur -lux (u.a.) Détecteur ∆E (FWHM Energie incidente (eV **E**optimisation diffusé Flux incident sur le cristal Flux (u.a.) Echantillo E_{incidente} Energie incidente (eV 13

Mesure de la résolution en énergie : pic élastique

$(\Delta E_{\text{mesuré}})^2 = (\Delta E_{\text{spectr.}})^2 + (\Delta E_{\text{monochr.}})^2$ 10000 Si(440) Si(444) Ge(660) Cristal Е 6930 eV 8047 eV 9440 eV rayon 0,5 m 1 m 1 m 68,71° 79,99° θ_{Bragg} 79.33° $\Delta E_{mesuré}$ 3,0 eV 1,1 eV 1,3 eV ntensity (a.u.) $\Delta E_{monochr}$ $\Delta E_{\text{spectr.}}$

o approximation gaussienne

Energy (eV)

Mesure de la résolution en énergie : fluorescence

o approximation gaussienne

$(\Delta E_{\text{mesuré}})^2 = (\Delta E_{\text{spectr.}})^2 + (\Delta E_{\text{émission}})^2$

Cristal	Si(440)	Si(4	Si(880)	
raie	Co K α1	Cu I	Sr Kα1	
rayon	0,5 m	0,5 m	1 m	0,5
θ_{Bragg}	68,71°	79,	65,75°	
E _{émission}	6930 eV	8048	16105 eV	
ΔE_{mesure}	3.7 eV	3,4 eV	3,0 eV	13.8 eV
$\Delta E_{\acute{e}mission}$	1,76 eV ¹	2,11 eV ¹		4,63 eV ¹
$\Delta E_{spectr.}$				

¹ Krause M.O. & Oliver J.H., J. Phys Chem. Ref. Data, 8 (1979) 329 : natural widths of atomic K and L levels, X-ray emission lines

Origines de la résolution en énergie : micro-déformations

Origines de la résolution en énergie : micro-déformations

o Micro-déformations du cristal courbe

Application

Cristal	4	3	2	1	moyenne
I _{diffusé} (cps/s)	3800	430	2430	8100	
∆E (eV)	1,0				
I _{fluo - mesuré} (cps/s)	1000				

On remplace les cristaux par un détecteur solide: où le positionner ?

Cristal ∆E (eV) Nb de cps/s/cristal 1,76 eV émission, Co K α 50 000 mesure, Si(333), R=0,5m 3,2 eV dont largeur intrinsèque 0,06 eV approximation de Johann 1,05 eV hauteur du faisceau 0,54 eV microdéformations 2,95 eV F_{surface} en condition de Bragg (approx. Johann) 31%

6.93-6.93
6.92975-6.93
6.9295-6.92975
6.92925-6.9295

6.929-6.92925
6.92875-6.929

Pour conclure CAS: beaucoup plus sélectif qu'un SSD 0.122 (a) SSD 7 0.12 Absorption edge (raw spectra) 6 0.118 Normalized absorption 5 0.116 4 0.114 0.0006 0.0004 MAS 0.0002 0 5710 5720 5730 0 7650 7700 7850 7900 7750 7800 Incident energy (eV)

Pas beaucoup de photons

Mais on a de beaux photons

