

	Emittance		Beta [m]		λ[Â]	L [m]	Rms size [μm]		Divergence [µrad]	
	H [nm]	V [pm]	н	V			н	V	н	V
т		5	37.2	3	6.2	3.2	409	10.8	14.5	10.3
igh be	4				1	3.2	409	5.6	11.9	6.1
ťa					0.2	4	409	4.7	11.3	4.7
E		5	0.37	3	6.2	3.2	50	10.8	104	10.3
ow beta	4				1	3.2	49	5.6	104	6.1
					0.2	4	49	4.7	104	4.7
N.	0.13	2	4.7	2.7	6.2	3.2	26.7	10.3	11.4	10.2
ew latt					1	3.2	25	4.7	7.4	5.3
lice					0.2	4	25	3.5	6.8	4.4

POTENTIAL CHARACTERISTICS OF A ESRF PHASE II MX BEAMLINE

		N. L. W.	New lattice		1
	Current	(current optics)	(perfect optics)	New Lattice (50:1)	Smaller beams micro
Source size (FWHM; H × V; μm ²)	115 × 13.2	59 x 11	59 x 11	59 x 11	 nano μradian divergence
Divergence (r.m.s. H × V; µm ²)	104 imes 6.1	7.4 x 5.3	7.4 x 5.3	7.4 x 5.3	Increase in flux density
Demagnification ratio	3:1	3:1	3:1	50:1	• 2.5 orders of magnitude
Beamsize @ sample (µm ²)	~60 x 30	30 x 25	20 x 4	1.2 x 0.2	5 orders of magnitude
Flux @ sample (ph/sec)	~1 x 10 ¹³	~1 x 10 ¹⁴	~1 x 10 ¹⁴	~1 x 10 ¹⁴	• Do 'standard' things better
Flux density @ sample (ph/sec/µm ²)	7.0 x 10 ⁹	1.7 x 10 ¹¹	2.1 x 10 ¹²	2.4 x 10 ¹⁴	Faster, better & new experiment
Absorbed dose rate (Gy/sec)	3.2 x 10 ⁶	7.7 x 10 ⁷	9.6 x 10 ⁸	1.2 x 10 ¹¹	New scientific opportunities
Time to Henderson Limit (sec) ^c	6.3	0.26	0.021	0.0002	
(sec) ^c					

PHASE-II SUMMARY	
 Smaller beams micro nano μradian divergence smaller crossfire larger unit cells 	
 Increase in flux density 5 orders of magnitude smaller crystals 	
 Do 'standard' things better finer sampling 	
 Faster, better & new experiments multi-crystal data collection serial microsecond crystallography ultra-fast RT data collection (?) 	
'New' scientific opportunities • time-resolved studies Page 16 Gordon Leonard, ESRF Users' Meeting, February 2015	The European Synchrotron

