XRDUA – How to process (ID13) XRD imaging data

Frederik Vanmeert 03/12/2024

BAG Workshop 2024 - XRDUA Tutorial

Latest XRDUA version: 7.7.1.1

Overview What's new Download Source code Documentation Older versions Support

XRDUA is a software package developed by the Antwerp X-ray Imaging/Instrumentation Laboratory (AXiL) at the University of Antwerp. Its main purpose is to automate the processing of two dimensional x-ray diffraction images from scanning (µ)XRPD or (µ)XRPD tomography. It accepts images from flat area detectors and allows correction, calibration and modeling (Rietveld, Pawley, Pattern

IDL Applications

Decomposition). The primary goal i scanning) or in a virtual cross secti amount of material, structural prop visualized as well.

Starting with XRDUA

- Install IDL 8.3 or higher (no license required).
- Download XRDUA from 2 https://xrdua.sourceforge.net/
- Unzip the xrdua_vx-x-x-x.zip 3. package.
- Double-click "xrdua.sav" 4 (Windows) or type "idl -vm=xrdua.sav" in a shell (Linux/MAC).

Frederik Vanmeert - 2024 Heritage BAG Workshop

Installation/Starting up

What to expect

- General introduction to XRDUA
- Most useful options to help you get from ID13 EDF integrated data to compound-specific distribution maps
- Some tips on how to use the software with example workflows
- (Strong) bias to pigments and paint samples

What not to expect

- Exhaustive overview and understanding of XRDUA
- Many useful/advanced options that we won't have time for
- Blindly follow to success

Frederik Vanmeert - 2024 Heritage BAG Workshop

Expectation Management

2D Powder-XRD Analysis

Universiteit <u>https://xrdua.sourceforge.net</u> Antwerpen <u>https://sourceforge.net/projects/xrdua</u>

From raw diffraction data to phase distributions

- 2D diffraction image corrections
 - Spatial distortion / Flat field / Saturation / Masking / ...
- Calibration
- (batch) Azimuthal integration
 - Mean / median / ...
- ROI imaging

...

- Reference matching
- Autonomous whole pattern fitting
 - Rietveld, Pawley, PD
- Visualization (based on scaling factors, weight fractions, ...)

in Color Period Co	XRDUA: Madeleine	eBenders man1h 0000 0000	20749.cbf			
Bit Status Bit Status Bit Status Bit Status <t< td=""><td>ile Ontionr Refor</td><td>rm Curtam Diralau S</td><td>ortem blain</td><td></td><td></td><td>500 H.</td></t<>	ile Ontionr Refor	rm Curtam Diralau S	ortem blain			500 H .
0 0 Note for 0 Note for for 0 Secon for 0 0	IMAGE SCALING:				NATION CONTRACTOR OF THE OWNER OF	
0 0 0			1	11 11	11 11 11	1 11 111 11
4 4 70 7 80 7 80 7 80 7 80 7 80 7 80 7 80 7 80 7 80 7 80 7 80 7 80 8 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 90 10 90 10 90 10 90 10 90 10 90 10 90 10 90 10 90 10 90 10	0	·	\	11.1	1	1. 1. 111 1
 Note that the second sec	())		1		1 15	1 1 1 1 1 1
Market de la construcción de	د 📄 ک	11	1		11 11	1 1 1 1 1
An credit Process 00.0000 00000 00000 Bergistion 00000 00000 Bergistion 000000 000000 000000 0000000000 000000000000000000000000000000000000	100	//	Charles A.		1 1	11 1 11 1
Person Gran Person Skalan Person Skalan 10000 Skalan Person Skalan 1000 Person Skalan Person Person Skalan 1000 Person Pers	Auto scale	11	A STAN	A Startes	11 1	
WINCOR KAUADI INFORME Berosation Medica	Reverse Colors	Contraction News	1 1 1	1	1. 1	11/11/11/11
10000 Binktie Binktie Prevool file Binktie Die Staat Staat Die Staat Gebruik Die Staat Bang baard Die Staat Baard Baard	WINDOW SCALING:	1	1		11 1	Construction and a state through the terms of the state of the state of the state of the state of the
Bind Back Second Seco	1.00000					
Presentin Nocio Image: Second Se	Next file	The second	1 1 15	and succession	1 1 2 1	
MOE Zoen Beer staten Annahr effekt Beer staten Annahr effekt Beer staten Annahr effekt Beer staten Annahr effekt Beer staten Beer staten Beer staten Beer staten Beer staten Beer staten Staten of Staten of Staten of Staten of Staten of Staten of Staten of Staten of Staten of Staten of Staten of Staten of Staten of Staten of Staten of Staten of Staten of Staten of Staten of Staten of Staten of Staten of Staten of Staten of Staten of	Previous file	Store Land	111		1 1 1	
Non Ben gatalin Main Starg Gold Outrom Annular dista Doministication Backgound Backgound Savenin Savenin <	MODE:		111		1. 1.	
Bare state: Ami: State State Boltstom: Calvision Calvision Calvision Remove State: Same State: Bolt State: Same State:	Zoom	Real States	1. 1. 1. 1.	5. 13 States	100	
Mile Back Californi Galard Datolin Californi Galard Californi Californi Dayers Annul: 15242* Bask of Californi Galard Californi Californi <td>Beam position</td> <td></td> <td>111</td> <td></td> <td></td> <td></td>	Beam position		111			
Speed Laborn Carlwon	Mask Setup	- Constant - Constant		S. 19 5 1/-		
Luardour drivet Annuhur drivet Dannun drivet Annuhur drivet Bedragunoti Annuhur filz Bardinatori Annuhur filz Annuhur filz Bartistin	Spatial Distortion	EL COLLET			1 1 1	
Annual International Background Saussion Sargen Annut: 15 2047 Postor (Saussion) Mark att > 4 Specing (April 19 2027) Postor (saussion) 198 1497 Specing (April 19 2027) Rad. dat. (min) 198 1497 Specing (April 19 2027) Rad. dat. (min) 198 1497 Specing (April 19 2027) Rad. dat. (min) 198 1497 Specing (April 19 2027) Rad. dat. (min) 198 1497 Specing (April 19 2027) Rad. dat. (min) 198 1597	Calbradion Animathal affant	The second second		2.2.45		
Bedsgunnt Bedsgunnt Bedsgunnt Bedsgunnt Stauson - Base off - Mask off - d Sparag (M) 22667 Posting (M) 22667 Opposit 141542244.05 Opposit 15278 Bed die, Imm) 192.127 Berards (E) 152.11 Berards (E) 152.11 Befard, fact, date (m): 152.15 Befard, date (m): 152.15	Dainer Mater	12030000000000000000	CEDERA PROVA POSIT	NUMBER OF THE PARTY OF	Restriction of Constants	4
Par field Samuth Samu	Background					
Saction Saction Targers Amarch 11 5248************************************	Flat Field					
Dragen Assucht 15 2040" Mask utf > d Spacing (A) 22660" Protein (panis) 141 542 244 659 G spaces (Hum) 19 2070 Red det, Imm) 19 1497 Zehnik (T) 2726121 Hermath (s) 15 8275 Red Red det; Imm) 19 444 Annuch () 15 8275	Saturation					
Mask aff C > d Spacing (M) 3.2007 Positive (simulation) 141.542.264.009 O space (1/m) 19.2070 Rad. dat. (m) 199.1457 Defans (T) 17.2261.121 Hermity (G) 156 Path Rad. dat. (m) 104.444 Amuth (C) 15.9275	Zingera	Azmuth: 15.2048'				
d Specing (k) 0.2007 Peatin (pum): 111.542.224.659 Grapone (1/m): 19.2273 Rad. dat. (mi): 193.1457 24mat (): 27.242121 Hematy (): 19 Rat Rad. dat. (mi): 194.444 Annuch (): 19.8975	Mask off	۰ 📖			2	
Orspace (1/m): 15/2379 Rad. dat. (min): 951.4857 24heta (7): 2222121 Henrahy (): 156 Rad. Rad. dat. (min): 104.444 Annuch (): 152.575		d-Spacing (A):	3.26607	Position (pixels):	141.542,224.659	
26mba (*) [72 25012] Hermaty (*) 156 Pad Red det, trim): 154.444 Annuth (*): 13 5975		Q-space (1/m):	19.2378	Rad dat immit	99.1457	
Ref Red, det, Imm): 104 444 Assure (): 112 0275		Difference (Charling	27 202121		16	
Ref Rad, det. (mm): 104.446 Admuth (): 13.8375		29ma ().	ar averal	e ver only ():		
		Rat Rad. dist. (nm):	104.444	Azinuth ('):	19.8975	

] Map: Processing \		(π)		×
e Full processing mode	Fifet Scan Dimensional Researchings (1)			
nt/data15/Lab_XRD/2021-02-25/batch/MadeleineRenders_n_A	**************************************			
nt/data15/Lab_XRD/2021-02-25/batch/MadeleineRenders_n nt/data15/Lab_XRD/2021-02-25/batch/MadeleineRenders_n	Dir or list of files: //mnt/data15/Lab_XRD/ R · Paune · 1			
nt/data15/Lab_XRD/2021-02-25/batch/MadeleineHendens_n nt/data15/Lab_XRD/2021-02-25/batch/MadeleineRenders_n	File sorting CC >> Search now			
nt/data15/Lab_XRD/2021-02-25/batch/MadeleineRendens_n nt/data15/Lab_XRD/2021-02-25/batch/MadeleineRendens_n v/data15/Lab_XRD/2021-02-25/batch/MadeleineRendens_n	Mask File: //mrt/data15/Lab_XRD/ Selected ROI: sum			
nt/data15/Lab_XRD/202102-25/batch/MadeleineRenders_n nt/data15/Lab_XRD/202102-25/batch/MadeleineRenders_n	Output de: /mmt/data15/Lab_XRD/			
nt/data15/Lab_XRD/2021-02-25/batch/MadeleineRenden_n nt/data15/Lab_XRD/2021-02-25/batch/MadeleineRenden_n	Output filename: MadeleineRenders_map			
nr (data 15-ka, 2470) 2221-2023 bitadir Malatere Rinnen, j. nr (data 15-ka, 2470) 2221-2023 bitadir Malatere Rinnen, j. nr (data 15-ka, 2470) 2021-2023 bitadir Malatere Rinnen, j. nr (data 15-ka, 2470) 2021-2023 bitadir Malatere Rinnen, j. nr (data 15-ka, 2470) 2221-2023 bitadir Malatere Rinnen, j. data 15-ka, 2470) 221-2023 bitadir Malatere Rinnen, j. 2664 Bita	Advance Sesson/Port Advance Sesson/Line Advance sesson gandeline Overnete sesting capabilitie Diaber densk line Siege-imair on subfiles			
mile 1.3000001 Statistics Mathematical Actions Mathmati	20 22 2 ⁴ 2-bto (Degrees) 28		0	advanadammalammala

2D Powder-XRD Analysis

Universiteit https://xrdua.sourceforge.net Antwerpen https://xrdua.sourceforge.net

1D Profile Edi

From raw diffraction data to phase distributions

- 2D diffraction image corrections
 - Spatial distortion / Flat field / Saturation / Masking / ...
- Calibration
- (batch) Azimuthal integration
 - Mean / median / ...
- ROI imaging

...

- Reference matching
- Autonomous whole pattern fitting
 - Rietveld, Pawley, PD
- Visualization (based on scaling factors, weight fractions, ...)

📧 Pattern I	Modelling									-		×
Mode 	H D i hydrocerusste cerusste calcte goethte	Group name: Group numbe Included: no Number of fit Perform	cerussite r: 1 parameters:	3								
] zincite] quartz lazurite_hassan_afghani barite	Main Info Cell color: Gr	Symmetry ay = no param	y Initial C ieter, Red = fo	Constraints Re xed	fined Standa	ard Dev. A	SU(nit) ASU	(constr) ASU(r	ef) ASU(S	D)	
	azunte Co2SoO4	ASU paramet	ers:	Mama	7	Mush			-	SOF	Dee	_
	gypsum	0	Ivatoms	Ph	Ph2+	Ac (1/A x x)	x 0.250000	0.417390	0.753800	1 00000	1 33911	
	ntie	1	1	C	C4+	4c (1/4, x, y) Ac (1/4, x, y)	0.250000	0.417330	0.753800	1.00000	1 33911	- î -
	greenockite	2	1	01	02.	4c (1/4 x w)	0.250000	0.905700	0.909300	1 00000	1 33911	-
	wax	3	1	02	02-	8d (x y z)	0.463800	0.678600	0.917600	1.00000	1.33911	_
	CoAl2O4					ou (r, y, 2)	0.403000	0.070000	0.017000	1.00000	1.53511	, ×
	orda Jakit Jakit Jakit Jakit Jakit Dasan, idyhari Lakit Jakit Jakit Dasan Jakit Jakit Dasan Jakit Dasa	C4+-40 O2-12.0 Weight: Pb2+:77 C4+-45 O2-18.0	0 5 (%) (%) (%) >	•	6 6 5 4 3 2 1 1 2 2 1 1 2 2 1 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2		XZ Reset	Rebuild	Avis on/off			
				Uncor	nstrained $ \!$	Slow zoom	 ✓ Save I 	mage				
	,											
deleineRenders_	map1b_shifted_2_shifted_nosm	ooth									- 0	×
Display												
F										9		
E	1				=	iydrocerussite Ierussite				1		

2D Powder-XRD Analysis

Latest XRDUA version: 7.7.1.1

Overview What's new Download Source code Documentation Older versions Support

The XRDUA Documentation Series contains:

- Part1 (obsolete: needs updating!): Reference Manual
- Part2: Tutorial manuscript ዄ with example data 🕮

A more elaborate tutorial with manual and example data is available on the XRDUA website: <u>XRDUA Distribution Page</u>

Contents

1	XRDUA introduction 1 1.1 Install and run 1 1.2 Getting started 1 1.3 Overview 2 1.4 Some common operations 4
2	From raw data to reciprocal space 7 2.1 Raw image corrections 7 2.1.1 Zinger removal 8 2.1.2 Spatial distortion 8 2.1.3 Saturation removal 12 2.1.4 Background nemoval 12 2.1.5 Flat field correction 13 2.1.6 Masking off 13 2.2 Calibration 13 2.2.1 Calibration standard 14 2.2.2 Initial estimation of the beam position 14
3	2.2.5 Initial estimation of energy and sample-detector distance 15 2.2.4 Debye ring selection: manually 16 2.2.5 Debye ring selection: automatically 16 2.2.6 Calibrate 17 2.3 Azimuthal integration: from 2D to 1D 18 Live at the synchrotron 23
	3.1 Two-dimensional regions
1	3.3 Explorative batch processing
4	From reciprocal space to real life 31 4.1 Phase identification and pattern decomposition 31 4.1.1 Pattern decomposition 33 4.1.2 Identification and global parameters 37 4.1.3 Identification strategy 39 4.1.4 Phase distributions 41 4.1.5 Constraints 41 4.1.6 Rietveld refinement 42

Frederik Vanmeert - 2024 Heritage BAG Workshop

Official XRDUA tutorial

Frederik Vanmeert - 2024 Heritage BAG Workshop

XRDUA Workflow

Frederik Vanmeert - 2024 Heritage BAG Workshop

XRDUA Workflow

📧 XRDU	JA: dur	mmy.edf									_	×
File Opt	tions	Perform	Custom	Display	System	Help						
IMAGE	e scali 0	NG:										
	45											
_	- 100											
	100	_										
Aut	to scale	•										1
Reve	erse Colo	ors										
WINDO	W SCA	LING:										
1.00000												·
BR	OWSE											
N	lext file											
Prev	vious file	e										
M	IODE:											
4	Zoom											
Bear	n positio	on										
Mas	sk Setup	P								 _		
Spatia	al Distort	tion	Azimuth: 45.0	0000°								
Cal	libration		-	_								
Azimu	uthal off	set										
Deby	ye Mark	er										
Bac	kgroun	d										
Fla	at Field											
Sa	turation											
Z	lingers											
M	ask off											

XRDUA 2D

...

.

- visualizing 2D patterns
- 2D pattern corrections
- geometry calibration
- defining settings for azimuthal integration

Frederik Vanmeert - 2024 Heritage BAG Workshop

Main windows: **XRDUA 2D**

	XRDUA: dum	nmy.edf			
File	Options	Perform	Custom	Display	System
I	MAGE SCAL	Azir	muthal Inte	egration	
		Sur	face Integr	ration	
	0	Reb	oin Image		
-	-	Aut	omatic Co	rrection	F6
	45	Aut	omatic Int	egration	F7
	100			- D-H	
		Sup	erimpose	Patterns	
	Auto scale	Ave	erage Patte	torns	
14/	Reverse Co	Do	all 3	terns	
1.00	000		an 5		
	BROWSE	Exp	erimental	Setup	_
	Next file	Bat	ch Process	ing	F4
	Previous fi	Edit	t XDI files		F3
	MODE:	Edit	t 1D profile	2	F1
	Zoom	Cor	mpare 1D p	profiles	F2
	Beam positio	n			
	Mask Setup				
	Spatial Distorti	on 4	Azimuth: 45.	.0000°	
	Calibration				
	Azimuthal offs	et			
	Debye Marke	er			
	Background				
	- Flat Field				
	Saturation				
	Zinger	_			
	Maek off	_			
	Mask off				

XRDUA 2D

Perform ->

- Batch Processing
 - Perform batch processes
 - 2D -> 1D
 - 1D -> distribution maps
- Edit 1D profile
 - 1D diffractograms
 - Fitting model
- Edit XDI files
 - Results

Frederik Vanmeert - 2024 Heritage BAG Workshop

Main windows: **XRDUA 2D**

File Scan Dimensions Process options + • Go Update Main Window '(nskip.rmax) 'edf - / Abort File Search Speed (sec.): Dir or list of files: C\Users\F.Vanmeert\Dc R = -1 Wask File: U\NRMA\SCIENCE\Fred R = Search now Output dir: U\NRMA\SCIENCE\Fred Search now Othes Autosave Session/Point Autosave Session/Ine Autosave Session/Line Automatic saving on finish Overwite existing outputfiles Don't check files Skip+mmax on subfiles	Batch Processing: \		– 🗆 X
Full processing mode Explorative mode Girld mode Files Scan Dimensions Process options '.'(riskip,nmax) '.edf Dir or list of files C:\Users\F.Vanmeet\Do Mask File Output dir: U:\RMA\SCIENCE\Fred Output dir: U:\RMA\SCIENCE\Fred Output dir: U:\RMA\SCIENCE\Fred Output dir: Output files Quiput dir: Output files Output filename: Autosave Session/Point Autosave Session/Ine Quot tiles On theck files Skip+nmax on subfiles	File		
• • • • • • • • • • • • • • • • • • •	• Full processing mode • Explorative mode • Grid mode • O files • • • • • • • • • • • • • • • • • • •	Files Scan Dimensions Process options + + - / A '.'(nskip,nmax) *.edf - / A Dir or list of files: C:\Users\F.Vanmeet\Do R = Pi Mask File: U:\RMA\SCIENCE\Fredi < >> >> Output dir: U:\RMA\SCIENCE\Fredi Output filename: dummy_model_LW_Mary	30 Update Main Window bort File Search Speed (sec.): 3050 -1 Search now
	4		

- Explorative Mode
 - Perform batch azimuthal integration (2D to 1D)
 - Explore data
 - ROI imaging
 - Extract 1D diffractograms
- Full Processing Mode
 - Perform batch fitting (1D to distribution maps)

Frederik Vanmeert - 2024 Heritage BAG Workshop

Main windows: **XRDUA BP**

- Main Window
 - Shows 1D diffractograms
 - Background subtraction
 - Overlay PDFs
 - Model

•••

.

• Create fit models

Frederik Vanmeert - 2024 Heritage BAG Workshop

Main windows: **XRDUA 1D**

1D Profile Editor: dummy				- 0	×
le Options Perform Display BROWSE: Next file 1.0					
Previous file MODE: Data range Zoom 0.8					
Background Patte	tern Modelling			_ 0	×
PDF markers	Model	Sta	art refinement		
Move Legend LABELS: Select Any .000 Degrees .000 a.u. .2. Add Label Delete label Move label	Pawley Rietveld	eral profile parameters General fit results in Lorentz-polarization ckground type: alc+substract (strip) no Shift type: mple-detector shift Anomalous dispersion urce emission lines (first = max): Vavelength(Å] Intensity I 0 0.00000 1.00000 1.0	Quantitative Advanced fit param	ieters Unit o	ell ()

•

•

•••

Model

- Main Window
 - Shows 1D diffractograms
 - Background subtraction
 - Overlay PDFs

Create fit models

Frederik Vanmeert - 2024 Heritage BAG Workshop

Main windows: Modelling

XDI Editor:					- 0 ×]
File Normalization Processing Options					
	Combine Groups	Overlap Grou	ıps Gr	oup blending	Delete Groups
	Correlate Groups	Orientation	Statistics	Backlash	Tomography
	Image Scaling	Region Properties	Options	Mode Sh	ow Pixel juggling
	Intensity Scalin	ig:			
	100				
	Magnification	n:			
	5.00000				
	5.00000				
Display Group:					
— [•]					
Group information:					

- Results (groups)
 - (Intensity) Scaling
 - Edit/combine results
 - Resize results
 - ...
- Tomography
 - Single slice tomography reconstruction

Frederik Vanmeert - 2024 Heritage BAG Workshop

Main windows: **XRDUA XDI**

Files

- 1. Explorative Mode
- 2. Filename of edf file
- 3. Directory of edf file
- 4. Mask file (dummy_calib.msk)
- 5. Output directory
- 6. Output filename

CAREFULL!

- Always press ENTER when manually inputting data!
- Changing the mask file, also changes the output directory and the output filename!

Frederik Vanmeert - 2024 Heritage BAG Workshop

1. Loading ID13 EDF data

Scan Dimensions

- Мар
- 2. MotH steps: #pixels 1
- 3. MotV steps: #pixels 1
- 4. Options to change the orientation of the map

Frederik Vanmeert - 2024 Heritage BAG Workshop

1. Loading ID13 EDF data

Frederik Vanmeert - 2024 Heritage BAG Workshop

1. Loading ID13 EDF data

XRDUA BP

Process options

- 1. View progress to view the ROI image
- 2. Go!
- 3. ROI Image
- 4. Average (default) profile of the entire map
- 5. Explorative background applies a linear background under the ROI
- 6. Show superimposed profile instead of average profile
- 7. Some useful output
 - BP session, 1D tiff and XDI are automatically saved

Frederik Vanmeert - 2024 Heritage BAG Workshop

2. Exploring Data

XRDUA BP

ROI image visualization

- + : increase ROI image size
- -: decrease ROI image size
- **R** : reset ROI image size
- *: decrease contrast
- / : increase contrast
- = : set value for contrast based on max. intensity

ROI image visualization

- + : increase ROI image size
- -: decrease ROI image size
- **R** : reset ROI image size
- *: decrease contrast
- / : increase contrast
- = : set value for contrast based on max. intensity

Frederik Vanmeert - 2024 Heritage BAG Workshop

2. Exploring Data

1D profile options

- Right-click and hold : zoom in
- Single right-click : zoom out to original
- Left-click and hold : select ROI
 - When a ROI is selected, you can use the left/right arrows (for small jumps) and the up/down arrows (for large jumps) to move the ROI over the 1D profile

Frederik Vanmeert - 2024 Heritage BAG Workshop

2. Exploring Data

Link to XRDUA 1D

- 1. Update Main Window
- 2. Click pixel in ROI image
 - Loads 1D profile of that pixel to **XRDUA 1D**
- 3. Press ENTER when cursor is in ROI image
 - Loads averaged (or superimposed) 1D profile based on current ROI intensity in XRDUA 1D
- 4. Press ENTER when cursor is in 1D profile
 - Loads averaged (or superimposed)
 1D profile in XRDUA 1D

Frederik Vanmeert - 2024 Heritage BAG Workshop

2. Exploring Data – Extracting 1D profiles

Some main options

- 1. Set the data range to include in fit model
- 2. Apply background corrections
- 3. Go through PDF files
- 4. Open the Model window
- 5. Move the red line from **XRDUA BP**

Frederik Vanmeert - 2024 Heritage BAG Workshop

XRDUA 1D

Some main options

1. File

- Save/Load Mask (contains experimental parameters and fit model)
- Load (Multiple) PDF
- 2. Options
 - X: Y: (Change axis options)
 - Parameters (edit geometry parameters)
- 3. Display
 - Fit Total (Change visualization of fit)
 - Show Peaks (Show initial estimates of the model)
 - View PDF (Enable/Disable PDF and scale PDF)

Frederik Vanmeert - 2024 Heritage BAG Workshop

XRDUA 1D

1.

- Set Experimental Geometry
 - 🛛 🛛 X-ray Energy/Wavelength 🛛 📮
 - Distance Sample-Detector

These values are specific for each beamtime. Check the poni file of that beamtime for these values.

2. Reload 1D profile from **XRDUA BP**

This is necessary the first time that you fill in the values of step 1 or load these values from an existing mask file.

Frederik Vanmeert - 2024 Heritage BAG Workshop

2. Exploring Data – Extracting 1D profiles

Background Subtraction

- The Strip background usually works well. Set the Niter value so that it follows the background without cutting away intensity from the diffraction peaks.
- The background correction is shown as a dashed green line
- Display -> Hide Background
 - To remove the dashed green line

Frederik Vanmeert - 2024 Heritage BAG Workshop

2. Exploring Data – Extracting 1D profiles

Identifying compounds

- Load (Multiple) PDF
- Use prior knowledge of your samples

PDF

Powder diffraction files

These files are obtained through other software, such as Match! and various extensions are possible. It is also possible to create these within the XRDUA Model window (saved as .pdd).

Frederik Vanmeert - 2024 Heritage BAG Workshop

3. Identifying compounds

Identifying compounds

2

3.

0D

- Use ROI tool in XRDUA BP to select unidentified peaks and obtain a good 1D profile for identification
 - Check with available PDF If no PDF file can explain the signal(s), save the 1D profile in **XRDUA 1D** and use dedicated search-match software (Match!, QualX2, ...).

Identifying compounds

00

- Use ROI tool in **XRDUA BP** to 1 select unidentified peaks and obtain a good 1D profile for identification
- 2 Check with available PDF
 - If no PDF file can explain the signal(s), save the 1D profile in **XRDUA 1D** and use dedicated search-match software (Match!, QualX2, ...).

Identifying compounds

×

00

- Several artefacts can make identification difficult and/or impossible
 - Preferred orientation: this causes a (strong) difference in relative intensity
 - "Large" crystals: this results in very strong intensities for one or a limited number of diffraction peaks for the given crystal
 - No physical sample preprocessing is possible to reduce these artefacts, so be aware of the limitations of your data!

Identifying compounds

×

00

- Several artefacts can make identification difficult and/or impossible
 - Preferred orientation: this causes a (strong) difference in relative intensity
 - "Large" crystals: this results in very strong intensities for one or a limited number of diffraction peaks for the given crystal
 - No physical sample preprocessing is possible to reduce these artefacts, so be aware of the limitations of your data!

Identifying compounds

- Several artefacts can make identification difficult and/or impossible
 - Preferred orientation: this causes a (strong) difference in relative intensity
 - "Large" crystals: this results in very strong intensities for one or a limited number of diffraction peaks for the given crystal
 - No physical sample preprocessing is possible to reduce these artefacts, so be aware of the limitations of your data!

00

My strategy (depends on the goal of the analysis):

- Identify all main phases of the average profile, using as much prior information as you have.
- Use ROIs on peaks of an unknown phase to obtain a good 1D profile for that phase using **XRDUA BP** (single pixel or average). Identify it with available PDFs or with dedicated software (Match!, QualX2, ...).
- Repeat this for all/most signals.
- Create a small ROI window in **XRDUA BP** and 'scan' this over the entire angular range and/or place ROI selectively on angles for which you expect a diffraction peak of a specific phase to check for meaningful 2D intensity distributions.
- Be aware of the limits of your data (preferred orientation, "large" crystals, ...).
- Create your fitting model gradually.

3. Identifying compounds

XRDUA BP + XRDUA 1D

Identifying compounds

- This is the process that (usually) requires the most time from the user.
- A priori knowledge and complementary information are very helpful
 - Sometimes it's good to be stubborn and keep trying ;-)

File

Plotting

Plotting

Plotting

Plotting

XRDUA BP + XRDUA 1D

Saving ROI images

- Select ROI around peak of • interest
- Check correct selection of peak ٠ in **XRDUA 1D** (when "Update Main Window" is checked)
- Save result (only map) ٠

Select Data Range

- Select the data range that you want to include in your fit model
- Typically:

•

- Large scattering angles produce signals of low intensity of there is a lot of overlap with other phases
- Low scattering angles show the drop in intensity of the beam stop and the decrease in intensity of the primary beam and beam scatter
- If your phases of interest are not in those regions, avoid putting them in your model.

Frederik Vanmeert - 2024 Heritage BAG Workshop

5. Creating a Fit Model

Main Model window

Model

convert

- General fit parameters
- Default settings should be fine for most cases
- Change Background type if you didn't use 'strip' background
- Different 'structural' and 'structureless' groups to use in the fitting model

- **Pawley**: uses crystal structure information with the structure information
- **PD**: contains no structural information (list of peak positions, intensities and widths)

Frederik Vanmeert - 2024 Heritage BAG Workshop

5. Creating a Fit Model

Link to XRDUA 1D

- 1. Update Main Window
- 2. Click pixel in ROI image
 - Loads 1D profile of that pixel to **XRDUA 1D**
- 3. Press ENTER when cursor is in ROI image
 - Loads averaged (or superimposed) 1D profile based on current ROI intensity in XRDUA 1D
- 4. Press ENTER when cursor is in 1D profile
 - Loads averaged (or superimposed)
 1D profile in XRDUA 1D
- Add groups to the model step by step
- Extract a suitable 1D profile in which the phase(s) of interest is/are clearly present.
- Use contrast/intensity scaling when needed to visualize the distribution.

Frederik Vanmeert - 2024 Heritage BAG Workshop

XRDUA 1D + Model

Main Model window

Model

convert

- General fit parameters
- Default settings should be fine for most cases
- Change Background type if you didn't use 'strip' background
- 2. Different 'structural' and 'structureless' groups to use in the fitting model

- **Pawley:** uses crystal structure information without atomic information
- **PD**: contains no structural information (list of peak positions, intensities and widths)

RUKS MUSEUM

5. Creating a Fit Model

Frederik Vanmeert - 2024 Heritage BAG Workshop

Model

•

Working with fitting groups

- Right-click on the group for options
- Add 'peak group' to different structural groups
 - Change name of 'peak group'

5. Creating a Fit Model

Pattern Modelling								-		×	
Model PD Powley Pawley0 Petradd	Group name: Hydrocerussit Group number: 0 Included: yes Number of fit parameters: Perform V	e 3									
Hydrocerussite	Perform Load Structure File Save Structure File Add ASU position	Initial Cr Red = fixed	onstraints Ref	ined	tandard Dev. AS	U(init) ASU(cor	nstr) ASU(ref)	ASU(SD)			
	Delete Peaks With Delete Small Peaks Reset Unit Cell Recalculate HKL	k 0.00000	I 1.00000	m 6.00000	FWHM_L 0.100000						
	Save Peak param Save FWHM Save SNR Save Peaks as PDF	0.00000 0.00000 0.00000 0.00000	-2.00000 6.00000 4.00000 -5.00000	6.0000 2.0000 6.0000 6.0000	0 0.100000 0 0.100000 0 0.100000 0 0.100000		I				
	5 1.00000 Global position parameters:	0.00000	7.00000	6.0000	0 0.100000						
	ddist(mm) 0 0.00000	a 5.24650	b 5.24650	с 23.702(alpha) 90.0000	beta 90.0000 1	gamma 20.000				
	Global intensity parameters scaling 0 0.00000										
	Global FWHM parameters: U 0 0.00000	V 0.00000	W 0.0100000	IG 0.(
					0.00	000] This] refir	valu Ied b	e w oy tl	rill l ne r	ce nodel
					5.24	650	Thes	e va	lue	s w	ill NOT
					0.10	000	be re	efine	ed b	y tl	וe model

Model

Rietveld Group

- Load Structure from structure • file 🗖
 - E.g., cif files from COD or AMCSD ٠
 - .cel from XRDUA •
- Initial ٠
 - Shows miller indices, multiplicity • of the different diffraction peaks within the selected data range
 - Unit cell parameters ٠
 - Constraints
 - Set constraints on the parameters ٠ that are refined
- Refined •
 - Refined values obtained by the ٠ model

Frederik Vanmeert - 2024 Heritage BAG Workshop

5. Creating a Fit Model

.

American Mineralogist Crystal Structure Database

This site is an interface to a crystal structure database that includes every structure published in the American Mineralogist, The Canadian Mineralogist, European Journal of Mineralogy and Physics and Chemistry of Minerals, as well as selected datasets from other journals. The database is maintained under the care of the Mineralogical Society of America and the Mineralogical Association <u>n Hyarodefrassite</u> the National Science Foundation.

hydrocerussite

Logic interface

Download

People

Data Last Updated: January 08, 2024

Web Page Last Updated: July 31, 2018 This page has been accessed 4640665 times.

Siidra O, Nekrasova D, Depmeier W, Chukanov N, Zaitsev A, Turner R Acta Crystallographica B74 (2018) 182-195 Mineral Hydrocerussite-related minerals and materials: structural principles, Author chemical variations and infrared spectroscopy Chemistry Search Locality: synthetic _database_code_amcsd 0020727 Cell Parameters and Sym 5.257 5.257 23.636 90 90 120 R-3m Diffraction Search z occ Uiso U(1,1) U(2,2) U(3,3) U(1,2) U(1,3) U(2,3) atom х General Search Pb1 0.21570 0 .0271 .0249 .0249 .0314 .0125 0 P Search Tips .9153 -.9153 .00191 1/6 .0286 .0015 Ph₂ .0337 .0337 .0279 .0238 -.0015 Search Reset 1/3 2/3 .2337 .031 .012 .012 .068 .006 P P .8083 -.8083 -.0979 .038 .032 .032 .063 .026 -.001 .001 OH р 0.3124 .070 .090 .090 .030 .045 B р AND OR Download AMC data (View Text File) Viewing (About File Formats)

 amc long form
 amc short form
 cif Download CIF data (View Text File) amc O cif O diffraction data Download diffraction data (View Text File) View JMOL 3-D Structure (permalink) Hydrocerussite Martinetto P, Anne M, Dooryhee E, Walter P, Tsoucaris G Acta Crystallographica C58 (2002) i82-i84 Number of Files downloaded since Apr 1, 2003: 1180206959 Synthetic hydrocerussite, 2PbCO3*Pb(OH)2 by X-ray powder diffraction Locality: synthetic database code amcsd 0010324 Also see our complete list of minerals and complete list of authors. 5.2465 5.2465 23.702 90 90 120 R-3m atom z occ Uiso X This material is based upon work supported by the National Science Foundation under Grant Nos. EAR-0112782. and EAR-062 conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of Pb1 0 0.21510 .0172 Should the use of the database require a citation, then please use: Downs, R.T. and Hall-Wallace, M. (2003) The American Mir Pb2 .9158 -.9158 .0016 1/6 .0215 Database, American Mineralogist 88, 247-250, (pdf file) C 0 0 .4304 .028 Contact Robert T Downs for suggestions and corrections. .8568 -.8568 .4318 .028 01 OH2 -.293 .293 .0200 1/3 .010 Download AMC data (View Text File) Download CIF data (View Text File) Download diffraction data (View Text File) View JMOL 3-D Structure (permalink) Download in: Amc Format
V Select All Clear All View Selected Data Multiple datasets can be concatenated into a single downloadable file by selecting the datasets and then clicking Download as Text File Multiple datasets can be downloaded as individual files inside a ZIP archive by selecting the datasets and then clicking 5. Creating a Fit Model Total number of retrieved datasets: 4 View in amclongform, download in amc

5 MUSEUM

Return to AMCSD Home Page

Loc- mentage BAG Workshop FICUCIIK VUIIIICCIT

5. Creating a Fit Model

Model

1.

Convert Rietveld to PD

- Peak positions and relative intensities are calculated based on the structural information in the Rietveld model. To speed up the fit, convert the Rietveld group to a PD group (i.e., a list of positions, relative intensities and widths).
- 2. Exclude irrelevant groups and the Rietveld group from the fit

5. Creating a Fit Model

Model

Main group window

- Chose Peak profile type
- Select which parameters to refine =
- 'Global' to link various parameters during refinement
 - Positions: are refined by a single parameter 'sample-detector distance')
 - Area: intensity is scaled using a single scaling factor
 - FWHM: widths are refined using the Cagliotti peak width function

5. Creating a Fit Model

First Fitting

Make sure to restore the background in **XRDUA 1D**, since the main model window has 'Background type: 'Calc+subtract (strip)

RUKS MUSEUM

• Start refinement

Find good starting values

- 1. Subtract background agai
- 2. Click 'Fit Total' (changes to 'Fit resolved')
- The refined tab shows therefined values for the different parameters
 - ddist: offset to sample-detector distanc<mark>宇</mark>
 - scaling

•

• W: Cagliotti theta independent peak width parameter

Find good starting values

- Check the refined values
 (Model) and the fit (XRDUA 1D)
- Decrease the value for scaling. This value is too high as a starting value for pixels that do not contain this phase
- 2. Copy the refined values to the initial values for the model

Frederik Vanmeert - 2024 Heritage BAG Workshop

5. Creating a Fit Model

XRDUA 1D + Model

Set constraints

- It's best to constrain the position and width to avoid unrealistic values
- 1. Refined (constraints +/-C)
 - This constraints the value based on the initial value and a constant
- 2. Set the constants to be used as constraints
 - This depends on your sample, but a good start is e.g.,
 - ddist: 1 mm
 - W: ca. 1/3 of initial value

Add a new group for the next phase and repeat the procedure

- 1. Find a suitable 1D profile
- 2. Create Rietveld group
- 3. Load structure file
- 4. Check charges
- 5. Copy to PD
- 6. Start refinement
- 7. Check fit and refined values and lower the intensity value
- 8. Set Initial = Refined
- 9. Set constraints
- 10. Rerun fit

Frederik Vanmeert - 2024 Heritage BAG Workshop

5. Creating a Fit Model

Add a new group for the next phase and repeat the procedure

- 1. Find a suitable 1D profile
- 2. Create Rietveld group
- 3. Load structure file
- 4. Check charges
- 5. Copy to PD
- 6. Start refinement
- 7. Check fit and refined values and lower the intensity value
- 8. Set Initial = Refined
- 9. Set constraints
- 10. Rerun fit

Frederik Vanmeert - 2024 Heritage BAG Workshop

5. Creating a Fit Model

Frederik Vanmeert - 2024 Heritage BAG Workshop

5. Creating a Fit Model

Unknown phase

- Create a PD group (since no structural information is known)
- Add Peaks Manually and click and drag from left to right over the peak to add

Frederik Vanmeert - 2024 Heritage BAG Workshop

5. Creating a Fit Model

Unknown phase

 \times

- Create a PD group (since no structural information is known)
- Add Peaks Manually and click and drag from left to right over the peak to add
- Under the initials tab, you will see the peaks being added with a position, intensity and width

Frederik Vanmeert - 2024 Heritage BAG Workshop

5. Creating a Fit Model

Unknown phase

- Create a PD group (since no structural information is known)
- Add Peaks Manually and click and drag from left to right over the peak to add
- Under the initials tab, you will see the peaks being added with a position, intensity and width
- To get better starting values for the fit, start the refinement and check if the fit looks good.
- Perform Initial = Refined

Frederik Vanmeert - 2024 Heritage BAG Workshop

5. Creating a Fit Model

Unknown phase

- Since the peaks selected here belong to the same phase, we want to set the Position to Global. I do not refine the individual FWHM → Deselect Refined for FWHM)
- In the Initial tab, set isodeform to 1
- Start refinement and check fit
- Set Initial = Refined again to update the initial parameters
- 🔹 Set constraints on Positio 🔁
- Rerun fit to check for mistakes
 ;-)

Frederik Vanmeert - 2024 Heritage BAG Workshop

5. Creating a Fit Model

Finally ready with the model

- Restore the background
- Make sure only the relevant groups are included
- Save the model

Tip: this is also a mask file with .msk extension. Do not confuse this with the mask file used in **XRDUA BP**.

Frederik Vanmeert - 2024 Heritage BAG Workshop

5. Creating a Fit Model

Full Processing with model

- Restore batch process (if it was closed): File -> Restore Session
- 1. Select Full processing mode
- 2. Change file to .tiff file generated by the Explorative mode batch process
- Change Mask File to the fit model and change output directory and filename
- 4. Deselect Update Main Window
- Deselect View progress (under Process options)
- Press Go

Frederik Vanmeert - 2024 Heritage BAG Workshop

6. Batch processing of fit model

Full Processing with model

 Wait ... or do something else (e.g., this fit took 10 h to finish)

Tip: the batch session in Full processing mode does not get saved automatically. Save it so that you can easily rerun it in case you need to make a change to the fit model.

Frederik Vanmeert - 2024 Heritage BAG Workshop

6. Batch processing of fit model

Frederik Vanmeert - 2024 Heritage BAG Workshop

XRDUA XDI

Some main options

- 1. Save/Convert/Export images
- 2. Change color
- 3. Image and intensity scaling
- 4. Various options, including a link to **XRDUA 1D**
- 5. Options to manipulate groups
- 6. Window to scroll through the results
 - Each variable that was refined in the fit is present as a group
 - Also, standard deviations, derived parameters, quality of fit metrics are saved as a group

Looking at your results

- Open .xdi file with XRDUA XDI
- 1. Change scaling (and intensity)
- 2. Option to change color
 - Go to Options → Parameters
 - Deselect Manual color table

RUKS MUSEUM

• Select color

Verify results!

- Go to Mode and click Pattern
- Click on a pixel in XRDUA XDI to load the 1D profile in XRDUA 1D
- Verify if the model is working properly in this pixel
- Make changes to the model if necessary and rerun the fit
 - E.g., change initial values, change constraints, add other phases, ...

The model is constructed using only a small number of pixels. It is important to check if the model works well for the entire map!

	XDI Editor: EAC_1	0CFPG_roi602	219.xdi				_	. C		×
File	Normalization	Processing	Options							
	Open XDI Open Save As Save Save image Load Convert Exit)))) (1)) (2)	Save Group Save All Save colorbut Save RGB triangle	Combine Groups Correlate Groups Image Scaling Intensity Scalin 100 Magnification 2 2	s Overlap Gro Orientation Region Properties ng:	Statistics Options	roup blending Backlash Mode Shov	Delet Toi v Pi	e Grouj mograp xel jugg	os hy Iling
POS FILE INT.	ITION=[4.0], COOF POS.[4.0], FILENR =9.35142e-10	RD.=[0.00000mm =4 Display G 1 Group infor Symbol ussit scalino	m.0.0000mm] aroup: mation: Type Init 1DFit 8.70519e-09	IDL Select groups: 1, 23, 4	45, 67	X				
	0 Hydrocer	ussit scaling	1DFit 8.70519e-09							

Exporting results

- Results are exported using the current (intensity) scaling
- 1. Single group
 - Go to the group that you want to save
 - Save Group
- 2. Multiple groups
 - Write down all the group numbers that you want to save
 - Save All
 - Separate numbers of the group with a comma ,

Frederik Vanmeert - 2024 Heritage BAG Workshop

7. Results

Useful links and reads:

<u>XRDUA Distribution Page</u>

Main XRDUA website with info, tutorials, and download link to latest version

- XRDUA download | SourceForge.net Sourceforge page for XRDUA
- NV5 Customer Portal

Portal to register and download IDL virtual machine needed to run XRDUA

XRDUA Publication and general data processing strategy

https://journals.iucr.org/paper?S1600576714008218

- <u>American Mineralogist Crystal Structure Database</u> Free crystal structure database with atomic information
- <u>Crystallography Open Database</u>

Free crystal structure database with atomic information

• <u>QualX – Software Ic</u>

Free Search-Match software

Frederik Vanmeert - 2024 Heritage BAG Workshop

RUKS MUSEUM

Useful links