New semiconductor materials

Workshop on X-ray Detectors, ESRF February 13-14, 2003

Alan Owens

Science Payloads and Advanced Concepts, ESA/ESTEC, 2200AG Noordwijk, The Netherlands

SCI-A Laboratory program

Experimental goals

Produce Fano-limited hard Xray imagers

- sub-keV energy resolution
- 0.5-200 keV energy range
- room temperature operation
- micron spatial resolution
- low power and bias

Produce light weight hard Xray focussing optics

energy range matched to detection plane
arc-second psf's
short focal lengths
low replication costs

Research areas

- monolithics
- arrays
- Wolter-type nested shells
- micro-pore optics

What are compound semiconductors?

<u>Alloying: atoms mixed on a lattice</u> Solid Solutions and Ordered Compounds

Ordered Substitutional and Interstititials Compounds

Substitutional 'an element replaces host atoms in an orderly arrangement'

e.g., Ni₃Al (hi-T yield strength), Al₃(Li,Zr) (strengthening)

Interstitial 'an element goes into holes in an orderly arrangement'

e.g., small impurities, clays ionic crystals, ceramics.

Hume-Rothery Rules

When a substitutional alloy is formed:

- The *atomic radii* of the different atoms involved must *differ by <15%*
- The components must have the *same crystal structure*
- The species must have *similar valences*
- The components must *have similar electronegativities*

Rational behind Hume-Rothery Rules

- *Atomic radii must be similar* because if substituted atom is too large, *considerable strain will develop in crystal lattice*
- *The components must have similar crystal structure if solubility is to occur over all proportions*, *e.g.* Co/Ni system. However, this is less important if small proportions of solute being added such as in the doping of semiconductors.
- *Similar valences and electronegativities* indicates that components have *similar bonding properties*.

Phase diagram III-V materials

Phase diagram II-VI materials

• Wide variety of compounds available

Band-gap	Elemental	Binary IV-IV	Binary III-V	Binary II-VI	Binary IV-VI	Binary n-VIIE	Ternary Compounds
energy (eV)	Group IVB	Compounds	Compounds	Compounds	Compounds	Compounds	
0.00-0.25	Sn		InSb	HgTe			HgCdTe
0.25-0.50			InAs	HgSe	PbSe, PbS, PbTe		
0.50-0.75	Ge		GaSb				InGaAs
0.75-1.00		SiGe					
1.10-1.25	Si						
1.25-1.50			GaAs, InP	CdTe			AlInAs
1.50-1.75			AlSb	CdSe			AlGaAs
1.75-2.00			BP, InN				CdZnTe,CdZnSe,InAlP
2.10-2.25		SiC	AlAs	HgS		HgI ₂	CdMnTe
2.25-2.50			GaP, AlP	ZnTe, CdS		PbI ₂	TlBrI, InAlP, TlPbI ₃
2.50-2.75				ZnSe		TlBr	
2.75-3.00				MnSe			
3.10-3.25				MnTe			
3.25-3.50			GaN	MgTe, MnS			
3.50-3.75				MgSe, ZnS			
3.75-4.00							
4.10-4.25							
4.25-4.50				MgS			
4.50-4.75							
4.75-5.00							
5.10-5.25							
5.25-5.50	С						
5.50-5.75							
5.75-6.00			BN				
6.10-6.25			AlN				
6.25-6.50							
6.50-6.75							
6.75-7.00							

- Wide variety of compounds available
- Compounds can be selected for specific environments or applications

e.g., to operate in the high radiation fields of the LHC or Jupiter

operation at elevated temperature e.g., solar probes, direct beam monitors

Table III. Suggested "top ten" compounds for future development. Apart from AISb and CdMnTe, which could become the workhorses of room temperature X-ray and gamma-ray spectrometry, each material has great potential in a specific area. Even though diamond and TIBr are already under investigation, we include them here for future development because of their immaturity.

Material	Bandgap	Density	Comments	Space/medical/general applications	
	eV	g cm ⁻³			
InSb	0.17	5.66	Narrow band gap, 3 times better energy resolution than Si	High resolution X-ray astronomy (He3 temperatures), XRF	
InAs	0.35	5.68	Narrow band gap, 2 times better energy resolution than Si	High resolution X-ray astronomy (He ₃ temperatures), XRF	
AlSb	1.62	4.26	Theoretically, the best all round performer	Room temperature Si replacement, compact planetary spectrometers,	
PbO	1.9	9.8	Highest Z, gamma-ray detection	Compact gamma-ray planetary detectors/radio guided probes	
BP zb	2.0	2.90	Neutron detection	Spacecraft in-orbit neutron monitor, neutron capture therapy	
CdMnTe	2.1	5.8	Gamma-ray detection, inexpensive replacement for CdZnTe	γ-ray astronomy, low cost gamma-ray imagers/PET detectors, well logging	
SiC	2.2	3.2	All round radiation detection (p,n y) in extreme environments, rad hard	Planetary surface X-ray spectrometer, solar flare monitor, nuclear reactors	
III-N			High temperature ceramics, chemically inert, stable, range of band-gaps	High temperature applications, planetary surfaces, solid state lighting	
InN	2.0	6.81	high effective hole mass, high Z	Compact gamma-ray spectrometer for rovers	
GaN	3.4	6.15	high mobility, high speed applications	Solar X-ray monitors. Penetrators, synchrotron applications	
BN	6.0	3.48	neutron detection, extremely rad. hard	Planetary surface neutron monitor, nuclear pile detectors	
AIN	6.2	3.25	widest bandgap, radiation hard	Solar blind X-ray monitors, well logging	
TIBr	2.68	7.56	High Z, gamma-ray detection	Gamma-ray astronomy/ radio guided probes, well logging	
Diamond	5.4	3.52	High temperature, hard, chemically inert, radiation hard, robust, stable	Detectors for hot corrosive, atmospheres, solar flare monitors, hadron	
				therapy - tissue equivalent detectors	

Owens (2003)

- Wide variety of compounds available
- Compounds can be selected for specific environments or applications e.g., high temperature operation

SiC blue photodiode (25mm²) operating at 600° C

- •Wide variety of compounds available
- •Compounds can be selected for specific environments
- •Materials can be <u>engineered</u> for specific applications bandgap or wavelength engineering, e.g., colored LEDs (NASDAQ display in Times Square)

Wide variety of compounds available
Compounds can be selected for specific environments
Materials can be engineered for specific applications

e.g., photonic crystals, quantum wires

Figure 8. (a) The schematic of the 2-D PBG light emitting diode structure. (b) A scanning electron micrograph of the 2-D PBG light emitting diode.

Spatially resolved photoluminescence

- •Wide variety of compounds available
- •Compounds can be selected for specific environments
- •Materials can be engineered for specific applications
- •Ability to match response and energy resolution to an application e.g., detectors matched to science - e.g., low band gaps for XEUS (detect redshifts >4)

•Wide variety of compounds available

•Compounds can be selected for specific environments

- •Materials can be engineered for specific applications
- •Ability to match response and energy resolution to an application e.g., GaAs detectors for planetary XRF, matched to an optic

X-ray focusing test of prototype optic

•Wide variety of compounds available

•Compounds can be selected for specific environments

•Materials can be engineered for specific applications

•Ability to match response and energy resolution to an application

r; at RT

(Ω**)**

>1013

1013

~10⁴ 50

> 10⁸ 10⁷ 10⁹

10¹¹ 10¹³ 10¹¹

•Wide range of stopping powers

mass and cost benefits for planetary spacecraft, surgical probes

	Z	E _G (eV)	ω (eV/ehp)
Diamond	6	5	13
SiC	6/10	3.3	8.4
Si	14	1.12	3.6
Ge	32	0.66	2.0
GaAs	31/33	1.4	4.3
InP	49/15	1.4	4.2
CdTe	48/52	1.4	4.4
CdZnTe	48/52	1.6	4.7
HgI₂	80/53	2.1	4.2
TIBr	81/35	2.7	5.9

Material Properties

Summary of some material properties:

NB, wide range of stopping powers available with similar energy resolutions

$40 \mu m$ of GaAs is equivalent to 500 μm Si – same resolution

•Wide range of stopping powers surgical probes - small, efficient, 98.6°F operation

•Wide variety of compounds available

- •Compounds can be selected for specific environments
- •Materials can be engineered for specific applications
- •Ability to match response and energy resolution to an application
- Wide range of stopping powers
- •Wide dynamic range in a single detector detectors with good X- and gamma-ray response

Owens et al., Nucl. Instr. & Meth., A497 (2003) 359.

•Wide variety of compounds available

- •Compounds can be selected for specific environments
- •Materials can be engineered for specific applications
- •Ability to match response and energy resolution to an application
- •Wide range of stopping powers

•Wide dynamic range in a single detector detectors with good X- and gamma-ray response

Compound semi-conductors under development

Pros and cons of current detector materials

<u>Si</u>

- ✓ well developed technology
- ✓ heritage
- well matched to optics
- ×limited X-ray response
- ×not rad hard
- X cooling issues

- RT operation possible
- ✓ well matched to optics
- ✓ hard X-ray response
- 🗸 rad hard
- × development issues

- ✓ RT operation
- ✓ hard X-ray response
- ✓ very rad hard
- × difficult to work with × soft

Pros and cons of current detector materials

<u>CdZnTe</u>

<u>TIBr</u>

- sub-keV energy resolution
 hard X-ray response
 seems rad hard
 RT operation
- Xexpensive (HPB)
- ✓ Fano limited
 ✓ hard X-ray response
 × not rad hard
 × cryogenics
 × fabrication problems

- ✓ sub-keV energy resolution
- ✓ hard X-ray response
- 🗸 rad hard
- ×polarization effects
- × difficult to work with
- ×toxic (genetic modifier)
- kev energy resolution
 stable, chemically inert
 very rad hard
 xpoor transport properties

- 3 materials matured & detection systems fabricated
- 5 other materials under study
- technology development program in place & ongoing
- extensive testing program at the ESRF, HASYLAB and BESSY
- ESA close to Fano resolution limit for GaAs and CdZnTe
- immediate planetary and astrophysics applications
- clinical spin-offs

Beamline set-up

GaAs evolution : arrays

GaAs prototype 32 x 32 array - first results

+

GaAs prototype 32 x 32 array - HASYLAB tests

Beamline X-1

GaAs prototype 32 x 32 array - first results

Erd et al., Nucl. Instr. and Meth A487 (2002) 78.

32 x 32 pixel array, spatial distributions E=15 keV, 20 x 20 μ m² beam, 10 micron resolution

