Any use of these slides or Information there-from should be appropriately referenced	March Meeting of the American Physical Society Focus Session: X14.001 Advanced Detectors for Synchrotron Research. Austin. Texas, USA 6 March 2003	ø	Grenoble, France 13 February 2003	ESRF Detector Workshop	SPring-8/JASRI	Alfred Q. R. Baron	Avalanche Photodiodes (APDs) as Fast X-Ray Detectors
			Data Acquisition System	Arrays	Devices	General Introduction	Talk Contents

A.Q.R. Baron, Feb.& Marc	A.Q.R. Baron, Feb.& March, 2003
	Review: Baron, Hyp. Int. 125, (2000) 29
	Now: Development several places DESY, ESRF, NSLS &
	Better Build your own amplifier - easy and <i>better.</i> Baron, <i>et at</i> , NIMA 400 , (1997) 124.
Less Good Points: Small (< ~1 cm ² , ~ mm ² typical) Poor Efficiency for High X-Ray High Energy	More Reliable 100 μm device, 1x1 cm ² Baron, NIM A 352, (1994) 665.
Good Efficiency at Lower X-Ray Energies Small, Rugged (relative to a PMT)	Faster 10 μm device, φ1 mm, 0.1 ns resolution Kishimoto. NIM A 351, (1994) 554.
Good Pulse Height Resolution (~20%) Low Noise (~0.01 Hz)	More 50 μm device, φ16 mm, 0.7 ns Resolution Efficient Baron and Ruby, NIMA 343, (1993) 517.
Good Points: Fast -> Good Time Resolution (0.1 to 1 ns) & High Rates (<~108/Channel)	First 30 μm device, φ1 mm, 0.3 ns Resolution Kishimoto, NIMA 309, (1991) 603.
Si Diode + Internal Gain	Fast X-Ray Detectors
Fast Single Photon Detector	Original x-ray focus was pulse height resolution (PMT Alternative)
APD Detector Overview	X-Ray Detection History

A.Q.R. Baron, Feb.& March, 2003	Trade Off: Higher efficiency (at normal incidence) <-> Poorer time resolution	Lots of carriers to start - 1 eh pair/ 3.6 eV Efficiency determined by "active thickness" of Si before the gain region Drift to gain region takes time (~10 ps/µm)	Absorption Drift Gain Important Points:	Avalanche Region	X-Ray Detection with an APD
A.Q.R. Baron, Feb.& March, 2003	Generally: Smaller Capacitance Devices have Faster Signals Smaller Area & Thicker Depletion Region	Leading edge shape (rise time) due to Carrier Transport Time Trailing Edge (fall time) due to Diode Capacitance & Amplifier Input Impedance	Important Point: (Assuming sufficient amplifier bandwidth)	Wide-Band (~GHz) Amplifier (near the diode) ~50 Ohm Input Impedance (Minicircuits, Phillips, Ortec) Fast Discriminator (NIM levels) (Ortec Phillips)	Electronics

A.Q.R. Baron, Feb.& March, 2003

Older: ~1 GHz, 2 dBm

New - for faster (array) devices

2 GHz, 10 dBm

50 Ohm 0.5 - 2 GHz 50 dB Gain ~3 to 5 dB NF 2-10 dBm output

Scope Traces

Fast Amplifier

Measured at Spring-8, \sim 35 ps electron bunch length

Best Time Resolution ~ 75 ps

Some Single Element APDs

			Hamamatsu Photonics Reach Through			PKI (EG&G) Reach Through	Radiation Monitoring Devices (RMD) Beveled Edge	API Beveled Edge	Company & Type
φ 3mm 3x5 mm ²	φ1, 3, 5 mm (S534X LC)	φ1 3, 5 mm (S534X)	φ 1, 3, 5 mm (S238X)	10x10 mm ² (Prototype)	$10 \times 10 \text{ mm}^2$ (C30703)	5x5 mm ² (C30626)	8x8 mm ² (also custom)	φ5, 10, 16 mm (also smaller)	Area & Model#
500~700 V	250-300 V	~150 V	100-250 V	350-450V	350-450 V	300-400 V	~1800 V	2000-2500V	Operating Voltage
$\sim 130~\mu m$	$\sim 25~\mu m$	$\sim 10~\mu m$	$\sim 30~\mu m$	~185 µm	~110 µm	~110 µm	30-50 µm	30-50 µm	Active Thickness
~ 1.3 ns FWHM	$\sim 0.2 \text{ ns}$ FWHM Tail $\sim 2 \text{ ns}$	~0.08 ns FWHM Tail < 2 ns	~0.3 ns FWHM, Tail to >5 ns	\sim 1.7 ns FWHM Tail to \sim 5 ns	$\sim 0.7 \text{ ns}$ FWHM	~1.6 ns FWHM	~0.5 ns FWHM Tail to > 10 ns	~0.5 ns FWHM Tail to >5 ns	Time Resolution

Pacific Silicon Sensor Monolithic arrays similar to Hamamatsu Not tested	PKI/EG&G(RCA) -> Special Structures Linear arrays with 300 or 150 mm pitch 25 to 128 elements	Monolithic Linear Array	2x2 Arrays of f1 mm devices 16x2 Array of 3x5mm ² Devices (Kishimoto) 4x2 Array of 3x5mm ²	Hamamatsu -> Close packing of small devices Linear arrays of f1 mm devices	Array of, say, 4x4 or 8x8 pixels	API &RMD -> Cut grooves in larger devices		Array Devices
			Grazing Incidence Acceptance: 2.0 x 0.7 mm ² Effective Thickness: ~ 0.5 mm	(Single chan = 160 ps)	Designed for good time resolution (~180 ps), high rates (16 chan) and high efficiency	16 Elements, 1.1 mm Pitch	Element size: 2.0 x 1 mm ² x 20 μ m thick	Fast Array (Hamamatsu)

Y

NFS From ¹⁶¹Dy

16 Channel Array

Normal Incidence: < 1% DQE Grazing Incidence: ~ 17% DQE

Time Resolution: 180 ps (fwhm) Achieved

Element size: ~250 x 400 μm^2 x 110 μm thick on 300 μm pitch

Goal: Very high rates and good efficiency Modest (~ns) time resolution

New: Be Cover (Normal and Grazing Incidence)

A.Q.R. Baron, Feb.& March, 2003

Webb & McIntyre IEEE Trans. Electron Dev. ED31 (1984) 1206

C30985 Response

Data rates up to a few kHz (10% dead-time at \sim 2 kHz)	Present system: 2 Parameters and up to 30 detectors. Easy to interface with existing fast (NIM) electronics.	For each event, record Detector channel (Discriminator) TAC output (ADC) Drive velocity (ADC)	CAMAC based system (1 μs/instruction) with a Discriminator & an ADC	IRS is usually a low count-rate experiment, so this is relatively easy.	dapt a nuclear-physics, event-based, data acquisition system to NRS experiments.	H. Thiess, A.Q.R. Baron & T. Ishikawa, manuscript in preparation.	Multi-Parameter, Multi-Channel Data Acquisition System
detector additional discriminators can be implemented. Besides the timing signal from the TAC another 15 external signals can be applied to the ADC. For the functional description see the text in the hardware section.	FC FCI eard External Fig. 1. Simplified circuit diagram of the aquisition system. Four detectors are drawn, the extension to more detectors is straight forward. For a setup with more than 16	CAMAC etale	Detectors		Bunchelock		Camac System Logic Diagram

A.Q.R. Baron, Feb.& March, 2003

Nuclear Forward Scattering (NFS) from two foils

Comments

- 0. Device Stability Still an issue. PKI Sealed 5x5 device is stable. Others: device dependent - some care needed.
- 1. Arrays of small elements interesting and good time resolution for high efficiency, high rates,
- 2. Closest Packing so far ~ 70 μ m dead space.
- ώ ASIC would be nice. The amplifiers are getting smaller.
- 4 Downstream Electronics = ? Integration = ?

row

. S Best Possible time resolution = ?

A.Q.R. Baron, Feb.& March, 2003

Time After Excitation –

Collaborators

H Thiess (SPring-8) (Multichannel Electronics)

T. Ishikawa (SPring-8)