Users Meeting Workshop ESRF Grenoble 14 February 2003

Pierre ROHR - TRIXELL - Moirans -FRANCE

Amorphous Silicon based matrix detectors for X-ray Imaging

OUTLINE

- X-ray imaging (medical): Challenges, needs, requirements ...
- Flat Panel Detector [FPD] basis.
 - Interaction layers ("direct/indirect" conversion)
 - Signal Storage
 - Readout schematics
 - Examples of structures
- Products characteristics
- Limitations for a-Si based FPDs.

I- The Challenges In X-ray Imaging

- 1- **Replace gradually the film-screen** systems with a wholly electronic, digital detector for static medical imaging. Reduce costs and dose.
- 2- **Replace the XRII-camera** with a digital detector also offering radiographic quality on isolated images.
- 3- Address other specific applications (NDT, scientific ...)

Need of large area detectors

- X-ray images are formed as shadows (Projections) of the interior of the body/object.
 - Not practical/possible to focus X-rays,
 - A practical difficulty in making an x-ray detector is the **need to image a large area** (solutions: 1D detector + scanning; optical coupling "phosphor +lens+CCD ..."; photostimulable phosphor; ...)
 - A full size detector is needed.
 - Amorphous silicon flat-panel active matrix array, originally developed for **computer displays** is the only technology able to meet this demand.

Compared requirements for radiography and fluoroscopy

	General radiography	Mammography	Fluoroscopy
Size	$>40 \mathrm{x}40 \mathrm{cm}$	>18 x 24 cm	>30 x 30 cm
Pixel size	~ 150 µm	60-100 µm	200-400 µm
Typical nb of incid.X/pel	~1000	~5000	~10
Corresponding dose	2.5 µGy	100µGy	25 nGy
Energy range	30-120 keV	~20 keV	30-120 keV
Input equiv. noise	< 5 X quanta	< 5 X quanta	< 1 X quantum
Dynamic range	12 bit	12 bit	12 bit
Readout time	1-5 s	1-5 s	~30 ms (30fps)

Table I. Summary of the main requirements for medical X-ray imaging.

At 50 to 70 keV: 1µGy ~ 400 to 500 X photons per pixel of ~150x150µm²

II- FPD Basis

- The basis of **Flat Panel Detector** (FPD) = coupling traditional x-ray detection material (scintillators or photoconductors) with a large area active-matrix readout structure.
- Creation of a x-ray image can be divided into 3 major steps:
 - x-rays Interaction with a detection medium \rightarrow detectable signal.
 - Signal Storage
 - Stored signal Measurement
- In digital imaging systems the incident image must be **sampled:** in the **spatial** (pixels) and **intensity** (gray levels or bits) **dimensions**.

There exists two approaches opto-direct (''indirect'') and electro direct

Technical stack

II-1 - Interaction: Direct vs. Indirect approaches

a-Se based FPD is the only commercial available photoconductor solution
For Direct conversion, charges carriers are driven by electrical field => good spatial resolution

Photoconductors vs. Scintillators (1)

- Resolution losses (blurring effects) common to all media:
 - Geometrical (oblique x-rays) \rightarrow absorption at different depths.
 - K-fluorescent x-rays
 - Others: Lubberts, statistical fluctuations ...

• Photoconductors:

- Theoretically nearly perfect MTF ... at first order
- a-Se (only available solution) is an exception to Klein's rule (e-h pair creation energy $W_{eff} \sim 3Eg$); W_{eff} high > ~ 50 eV (Klein ==> ~ 7eV)
- Recrystallization problems with a-Se
- High voltage needed ($E > 10V/\mu m$), risk for active matrix.
- basic condition : $\mu \tau E$ > absorption length
- Low Z for a-Se (34) require large thickness layers for high quantum efficiency at energies ~ 100 keV (diagnostic energies).
- Other materials are under investigation (CdTe, HgI₂, PbI₂, PbO, TlBr, ...)
- No (?) Dynamic (30 Hz) product available !!

Photoconductors vs. Scintillators (2)

• Scintillators:

- Many materials exists (CaWO₄, Gd₂O₂S:Tb; CsI:Na; CsI:Tl; ...),
- Physical structure can be very different.
- Main issue is the **balance between spatial resolution and X**ray detection efficiency.
- Solution = use of a structured scintillator eg. CsI (needle).
- The type of activator impurity introduced into the layer controls the emission spectrum (CsI:Na→blue; CsI:Tl→green).
- Problems with CsI: hydroscopic
- Dynamic products (³ 30 Hz) exists !!

II-2 - Signal Storage

Signal (direct on indirect) generates electron-hole pairs in either photodiode or photoconductor

Switching element

- The charge resulting from X-ray exposure is temporarily stored until it is transferred to the readout amplifier via the data column.
- Transfer is performed by a switch
- This switch is activated by an appropriate control pulse.
- Two concepts have been implemented:
 - a. Switching Diodes.
 - **b. TFT.**
- Properties of the switch:
 - more than 1000 switches in parallel on a data column,
 - Large dynamic range => $R_{off} / R_{on} > 10^6$.
 - $R_{on}C_{pixel} < readout time$
 - negligible noise

II-3 - a-Si Matrix & Readout architecture

Dynamic Imager operation

Example of TFT a-Si Matrix Structure

• <u>TFT switch + Photodiode</u>

Top view

Cross section (not to scale)

Technology

TRIXELL Products		Pixium 4600	Pixium 4800	Pixium 4700
Application		Graphy	Cardiology	Scopy/graphy
Image Geometry				in Development
Pixel Pitch [µm]		143	184	155
X-ray sensitive array [mn	n x mm]	H426,3 x V432,0	176,6x176,6	~ 420 x340
Image size [pixels]		H2981 x V3021	960 x 960	~2300 x 1900
Operation Mode				
A/D conversion dynamic	range [bits]	14	14	14
Frame Rate [Hz]		n.a.	30 (max.)	30
Time between images [m	ns]	> 5000	> 33	> 33
X-ray window duration [m	ns]	1 to 3200	13 to 60	4,5 to 5000
Image readout Time [ms]		1250	< 10	< 10 to 150
Characteristics				
X-ray generator voltage ra	ange [kV]	40-150	40-125	40-125
Noise equivalent dose		0,3 µGy	1,3 nGy/fr	
System dose		0,5 to 5 µGy	430 nGy/fr	7nGy/fr to 100nGy/f
Maximum linear dose		60 µGy	4,3 µGy/fr	24 µGy/fr
Differential non linearity (0 to Dmax)	< +/- 3%	< +/- 2%	
MTF @ 1lp/mm [%]		60	65	
MTF @ 2lp/mm [%]	DN5	35	32	30
DQE @ 0,1lp/mm [%]	2,5 & 1 µGy	55	65	70
DQE @ 1lp/mm [%]	2,5 & 1 µGy	40	58	
DQE @ 2lp/mm [%]	2,5 & 1 µGy	25	40	
Residual Signal (lag & me	emory effect) afte	er X-Ray off		
@1rst frame : @ 30fr/s	[%]	n.a.	< 3%	
@ 1s		n.a.	< 1%	
@ 10s		< 0,2%	< 0,2%	
@ 60s		< 0,02%	n.a.	
PC Acquisition Card		PCI 32 bits 33 MHz	PCI 64 bits 66 MHz	

Limitations for a-Si based FPD

- Conversion layer Absorption (a-Se, Gd₂O₂S ...).
- Fill factor (indirect approach only ?), shrinking of pixel size difficult.
- Residual signal
 - Incomplete readout (RC constant of the switching TFT)
 - Release of trapped charge from photodiode (or photoconductor), "memory effect". (solution = light pulse to fill traps in PD (Nt #) 5.10¹⁵ cm⁻³)
 - scintillator "after glow"
- Leakage current (photodiode (~fA) or photoconductor), ==> small reduction of dynamic range with time
- Defects (pixels, gain differences ...)
- Electronic noise associated to line capacitance and resistance
- Integration of "pixel electronics" limited.

CsI:Tl/a-Si is the good compromise now • Technical reasons: (medical)

- X-ray absorption, conversion efficiency, needle structure
- a-Si sensitivity well matched to CsI emission,
- a-Si double diode or photodiode/TFT with appropriate performance available.

• Industrial Reasons:

- Long experience of CsI deposition
- Mastering the technology has been achieved
- Costs of the existing products will decrease in the future.

• Performance

– Good in radiography, and in cardio-vascular (fluoroscopy).

