ESRF Detector Workshop, Grenoble, 13-14 February 2003

Detectors for Synchrotron X-ray Protein Crystallography

Soichi Wakatsuki

Photon Factory, IMSS, KEK, Tsukuba, Japan

Outline

- 1. Background: structural genomics and beyond
- New national project of Protein 3000
- Glycosylation and transport of proteins
- 2. Detector requirement for modern synchrotron X-ray protein crystallography
- 3. Detectors for future experiments: nano crystals/single molecule structual analysis using next generation Xray sources: an attempt of HARP detector

Currently 35 Structural Genomics Projects Worldwide Internationl Structural Genomics Organization http://www.isgo.org

 Structural Genomics and Proteomics Project list

 -Worldwide Initiatives

 Australia / Canada / EU / France / Germany / Japan / Korea / Switzerland / UK / USA

-

Australia:	3 planned	Canada	4
EU	1	France	4
Germany	1 & 1 planned	Japan	10
Korea	1	Switzerland	1
UK	3	USA	10

8 Consotia: Target oriented structural genomics of Protein 3000 (FY2002-2006)

Network Committee for Protein Analyses 500~ 600 structures/5 years, HT R&D

Transcription and Translation

Development and Cell Differentiation

Protein Transport and Modification

Signal Transduction

Higher Order Biological Functions

Brain and Neurology

Metabolism

Tsukuba Structural Biology Consortium

NW12 experimental table (N. Igarashi et al.)

Maximum sphere of confusion is 2.2 microns at the sample position

Beam stop etc. are installed in "Fancy-box"

New MAD Beam Line BL5 (M. Suzuki et al.)

Experimental Hutch

Detector size: ~300 mm

~30% of beamtime for SG projects

Optics Hutch as of 21 Jan 2003

Multipole wiggler

6 x 10 ¹¹ photons/sec through 200 mm x 200 mm

Energy range: 6 to 17 keV

Future: automated/integrated system

Expression and purification

Crystallization

Crystal harvesting

Data analysis

Automated data collection

Mouting & data collection

Protein Crystallization and crystal observation robot system to be finished by Autumn 2003

X-ray Area Detectors for Synchrotron X-ray Protein Crystallography

Detectors	Pros	Cons
On-line imaging plates	Large dynamic range, large area	Slow readout (20 to 200 sec per image) -> poor duty cycle Relatively broad PSF Relatively inexpensive
Off-line imaging plates	Large dynamic range, large area	Slow read-out (20 to 200 sec per image) -> poor duty cycle Relatively broad PSF Cumbersome to handle
Tiled, tapered fiber optics CCD	Fast readout (0.3 to dozens of secs)	Limited dynamic range (~<16 bits) Expensive to cover large solid angle
Lens-coupled CCD	Large active area (300 mm diameter) Inexpensive	Has gone into market very recently, and not yet established. Large (1 m long) and heavy (100 kg)
Flat Panel Detectors	Inexpensive, very light (~7 kg) Large active area (easily 400 mm square) Fast readout (a few seconds)	Inherent problem of noise
Pixel Array Detectors (PAD)	Extremely good PSF Extremely Fast readout	Still under development Difficult to tile the components to cover a large solid angle
HARP based Field Emitter Array (FEA)	Extremely sensitive (800 X CCD) Large area and very fast readout Very good PSF	At the very first stage of the development

X-ray Area Detectors for Synchrotron X-ray Protein Crystallographic Data Collection

Detector Requirements for good PX data collection (BL scientists' view)

- Large, fast, reliable and inexpensive
- Must be an integrated system data acquisition and storage data analysis archiving
- Easy to maintain

Detector Requirements for good PX data collection (common and <u>ideal</u>)

- Number of resoluion pixels: several thousands No. of reflections across the edge
 - = 2 * unit cell dimension / resolution limit

= 100 to 500, <u>1000</u>

- Active area size: 20 to 40 cm, <u>80 cm</u>
- Sensitivity: <u>photon counting</u>
- Readout time: 1 to few seconds, $1 \sim 30 \text{ msec}$
 - <u>Time to collect one data set: 1 min or less</u>
- Noise level: should allow long exposure (~100 sec for very weakly diffracting crystals)
- Dynamic range: 10^4 or wider (high and low resolution)

Continuous rotation method: (FUTURE) (eg. single sweep of 90 deg rotation)

Future: nano crystals and <u>single molecule</u> structural analyses

movie by Allison Bruce, Harvard University

http://www.hms.harvard.edu/news/clathrin/

ACLL (acidic dileucin) motif

ACLL Peptides recognized by GGA1-VHS domain

LRP3 CD-MPR	-MLEASDDEALLVC -EESEERDDHLLPM	
CI-MPR	-SFHDDSDEDLLHI	
Sort(WT)	-GYHDDSDEDLLE	
Sort (DD)	NN) - GYHNNSDEDLLE	
Sort (S/	A) - GYHDDADEDLLE	
Sort (S/I) - GYHDDDDEDLLE	
Sort (DE	O/NON) - GYHDDSNONLLE	
Sort (LL	AA) - GYHDDSDEDAAE	
h-secretase	-OHDDFADDISULK	
Ded	- CHIDDIADDIGUER	
Keu:	acture restudes	
Blue:	leucine pairs	
Purple:	serine residues that can be	
	phosphorylated by CK-II	
Takatsu et al, J. Biol. Chem. 276, 28541-28545		

From S. A. Tooze, Science, vol. 292, 1 June, 2001

Energy Recovery Linac (proposal of KEK, Tsukuba)

Future of structural biology. Single molecule or nanocrystals structural analysis at atomic resolution

Image comparison of visible light HARP vs. CCD

(a) HARP camera (b) CCD camera(+12dB) (0.3 Lux, F1.7)

Possibility of developing an X-ray detector with (1) much higher sensitivity compared to CCDs and (2) continous readout

Cold cathode HARP area detector (Tanioka, NHK)

X-ray HARP Prototype 2001 with a preamplifier (Mochizuki and Tanioka, NHK)

X-ray HARP 2001 prototype

130 mm (W) x 160 mm (H) x 247 mm (L)

X-ray HARP 2002 model

Test on PF-AR NW2.

(3,4 Dec 2002)

MTF 20 line pairs/mm->spatial resolution < 25 mm

X-ray HARP camera (Prototype 2001) In collaboration with Mochizuki and Tanioka, NHK

Number of pixels: 500 x 500, 1000 x 1000, or 2000 x 2000

Spatial resolution: < 20 mm

Active area: f 25.4 mm (used area: 10 mm by 10 mm)

Frame rate: 90/sec, 60/sec, 30/sec, 15/sec, 7.5/sec

(Accumulation time: 33 msec ~ 8 sec)

X-ray HARP development

•Kenkichi Tanioka (NHK)

•Ryo Mochizuki (NHK Engineering Services)

•S. Kishimoto, K. Hyodo, Structural Biology Group, Photon factory, KEK

Micromanipulator, all-in-focus microscope

•Tamio Tanikawa & Kotaro Ohba (AIST, Tsukuba)

Photron

PF Structural Biology Group.

- Ryuichi Kato (Assoc. Prof.)
- Mamoru Suzuki (Research Assoc.)
- Noriyuki Igarashi (Research Assoc.)
- Naohiro Matsugaki (Research Assoc.)
- Masato Kawasaki (Research Assoc.)
- Masahiko Hiraki (Research Assoc.)
- Minora Nagai (Robotics technician)
- Tomoo Shiba (Post-doc)
- Shinsuke Hiramoto (Post-doc)
- M. Inoue (Ph.D. student)
- Y. Yamada (Ph.D. student)
- Leo Chavas (Ph.D. student)
- Yurii Gaponov .Center-of-Excellence foreign scientist.
- Seconded: two technicians and one engineer

GGA.structures

Prof. Kazuhisa Nakayama Kanazawa Univ.