<u>Cryogenic High-Resolution X-Ray</u> <u>Spectrometer Development</u>

Stephan Friedrich

Lawrence Livermore National Lab Owen Drury, Thomas Niedermayr Simon Labov

Lawrence Berkeley National Lab

Tobias Funk Steve Cramer

Funding: DOE-OBER, NIH-GM, NSF-IMR, NASA SR&T

ESRF, February 14th, 2003

Cryogenic Detector Development at LLNL

Prof. Harris, Stanford

Outline: Why Cryogenic Detectors?

• <u>Which technologies?</u>

	Tunnel Junctions	Microcalorimeters
Operating Principle	$E \rightarrow \Delta Q$	$E \rightarrow \Delta T$
Resolution (0.1 to 6 keV)	2 - 12 eV FWHM	2 - 5 eV FWHM
Max. count rate	~10,000 cts/s	~500 cts/s

Both detectors have small pixel sizes $(\sim 0.2 \text{ mm})^2$ and are operated around 0.1 K.

• What for?

Fluorescence-detected absorption spectroscopy of dilute samples

Superconducting Detector Technologies

High resolution, faster

Highest resolution, slower

Superconducting Tunnel Junction Detectors

 $\Delta E_{\text{FWHM}} = 2.355 \sqrt{(\epsilon E(F+1+1/\langle n \rangle))}$

Small energy gap ($\Delta \approx 1 \text{meV}$) \Rightarrow High energy resolution ($\approx 10 \text{ eV FWHM}$) Short excess charge life time (μ s) \Rightarrow (Comparably) high count rate ($\approx 10,000$ counts/s)

Two-Stage ADR with Cold Finger

- 70 mK base T, 20h below 0.4K
- 3×3 array at ≈ 15 mm $\Rightarrow \Omega/4\pi \approx 10^{-4}$
- ≈15eV FWHM, >100,000 cts/s max

Adiabatic Demagnetization Refrigeration

- 1) Close heat switch
- 2) Apply B (lower entropy S)
- 3) Open heat switch (decouple T)
- 4) Reduce B slowly (keeping entropy constant \Rightarrow reduce T)

STJ Detector Performance

STJ Detector Performance

Trade-off between area and resolution

Trade-off between efficiency and resolution

Digital Signal Processing

Digital signal processors courtesy of X-Ray Instrumentation Associates, www.xia.com

X-ray Absorption Spectroscopy

Absorption Spectroscopy on 840ppm Mn in MgO

X-Ray Absorption Spectroscopy on Proteins

Spectrometer sensitivity is sufficient for ~100 ppm samples

MgB₂: Is the superconductivity anisotropic?

Mg donates ~2 electrons to the B sheets $\Rightarrow 2p^3$ configuration Hybridized sp₂ levels are halffilled \Rightarrow Fermi level

	Bulk	Thin Film
Al ₂ O ₃	3.481 Å	3.481 Å
MgB ₂	3.522 Å	3.496 Å

Angle dependence: MgB₂ film vs powder

The angle of the horizontally polarized incident beam is measured relative to the sample surface, i.e. 80° means in-plane excitation.

The peak at 192 eV is due to an excitonic resonance. The peak at 194 eV is due to B2O3 at the surface.

The epitaxial MgB_2 film does show anisotropic absorption. The powdered MgB_2 sample does not, as expected.

In-plane vs. out-of-plane excitation

The anisotropic electronic structure in MgB_2 is due to sp_2 -hybridization. Electronic density of states at E_{Fermi} is comparable in ab-plane and along c-axis.

GaInNAs: A material for 1.3-1.55µm lasers

Anneal GaInNAs to increase luminescence.

Telecommunications Application

- $Ga_x In_{1-x} N_y As_{1-y} (x \approx 0.70, y \approx 0.03)$ has a bandgap of ~1.3 - 1.55 µm
- It is nearly lattice-matched to GaAs
- Fabrication of inexpensive surfaceemitting lasers for optoelectronics
- Optical fibers best at ~1.3 1.55μ m

Problem: Band gap increases upon annealing

Nitrogen nearest neighbors affect optical properties

- III-V random alloy
- FCC lattice
- Anneal at 780 °C, 1min
- \Rightarrow Luminescence increases
- \Rightarrow Bandgap increases

• Energy gap increases with # of In-N bonds

- Strain favors decreasing # of In-N bonds
- Thermodynamics favors increasing # of In-N bonds

Nitrogen X-ray absorption fine structure

Absorption edge shifts show increasing number of N-In bonds Nitrogen migrates towards Indium upon annealing

Current Work: Enhance Sensitivity

Spectrometer Development:

- Polycapillary Optic (courtesy XOS)
- Larger Arrays

Microcalorimeters

Ultra-high energy resolution thermal detectors require low operating temperature T and small volumes for low heat capacity C

Microcalorimeter Fabrication

The Mo-Cu sensors are fabricated using photolithography like computer chips. Hundreds of identical devices are produced simultaneously on 4" wafers.

Mo/Cu thermal sensor:

- Fabricated at LLNL
- Stable, reproducible full-wafer process
- Flexible attached-absorber design

Application-specific absorbers:

- γ-rays: Sn crystal
- Neutrons: MgB₂, LiF crystal (so far)
- X-rays: Au film

Gamma Ray Spectrometry

Microcalorimeter Multiplexing

We can increase the area, count rate capabilities and sensitivity by frequency multiplexing many detector channels with a single SQUID preamplifier.

Present:

- dc and ac biased devices have same high resolving power $E/\Delta E \ge 1000$
- Single and multiplexed devices have same high resolving power $E/\Delta E \ge 1000$

Future:

- Single SQUID can multiplex ~30 sensors
- ~30 SQUIDs could offer three orders of magnitude improvement in sensitivity.

Summary

High-resolution cryogenic detector development

- Cryogenic spectrometer with cold finger
- 9-Channel STJ Arrays for synchrotron science
 < 10-20 eV FWHM up to 1keV, > 100,000 counts/s
- Microcalorimeters for nuclear analysis
 <100 eV FWHM for γ-rays below 100 keV
 Frequency-multiplexing

X-ray and γ-ray Spectroscopy

- Increased In-N bonding explains widened bandgap in GaInNAs upon annealing
- First γ-ray measurements on special nuclear materials (multiplexed).