- Home
- Users & Science
- Find a beamline
- Structure of materials
- ID03 - Hard X-ray Microscopy beamline
ID03 - Hard X-ray Microscopy beamline
Synopsis
ID03 is a hard X-ray microscopy beamline for the study of a wide range of materials, ranging from structural materials such as metals and alloys to functional materials such as ferroelectrics to biominerals. The main technique offered is dark field X-ray microscopy.
Status:
open
Disciplines
- Materials and Engineering
- Physics
- Life Sciences
Applications
- Metallurgy
- Structural materials
- Functional materials
- Fuel Cells
- Biominerals
Techniques
- Diffraction imaging (topography)
- Imaging
- Imaging, absorption based
- Imaging, monochromatic
- Single-crystal diffraction
- X-ray scattering
- XRD - X-ray diffraction
Energy range
- 11.0 - 60.0 keV
Beam size
- Minimum (H x V) : 30.0 x 0.5 µm²
- Maximum (H x V) : 1.1 x 0.5 mm²
Sample environments
- Mirror Furnace (T < 1500 - 1600 deg C), see Yildirim et al. (2019), Mirror Furnace for Synchrotron Dark Field X-ray Microscopy Experiments. arxiv:1912.01255
- Gas blower furnace (pool)
- LN2 jet cryostat (pool)
Detectors
- 2D: Near field camera: Optique Peter microscope with FreLoN CCD camera, 1.2 micrometer pixel
- 2D: Diffraction camera: FreLoN CCD camera with fibre-optic coupling, 47 micrometer pixel
- 2D: Far field camera: Optique Peter Twin Mic with pco.edge sCMOS camera, 1.2 micrometer pixel
- 2D: Wide field camera: video objective, Basler CCD camera, 50 micrometer pixel
Technical details
Photon flux up to 1013 photons per second
References
[1] Kutsal, M., Bernard, P., Berruyer, G., Cook, P. K., Hino, R., Jakobsen, A. C., … Detlefs, C. (2019). The ESRF dark-field x-ray microscope at ID06. IOP Conference Series: Materials Science and Engineering, 580, 012007. https://doi.org/10.1088/1757-899X/580/1/012007
[2] Simons, H., King, A., Ludwig, W., Detlefs, C., Pantleon, W., Schmidt, S., … Poulsen, H. F. (2015). Dark-field X-ray microscopy for multiscale structural characterization. Nature Communications, 6(1), 6098. https://doi.org/10.1038/ncomms7098
[3] Simons, H., Haugen, A. B., Jakobsen, A. C., Schmidt, S., Stöhr, F., Majkut, M., … Poulsen, H. F. (2018). Long-range symmetry breaking in embedded ferroelectrics. Nature Materials, 17(9). https://doi.org/10.1038/s41563-018-0116-3
[4] Poulsen, H. F., Jakobsen, A. C., Simons, H., Ahl, S. R., Cook, P. K., & Detlefs, C. (2017). X-ray diffraction microscopy based on refractive optics. Journal of Applied Crystallography, 50(5). https://doi.org/10.1107/S1600576717011037
[5] Simons, H., Jakobsen, A. C., Ahl, S. R., Detlefs, C., & Poulsen, H. F. (2016). Multiscale 3D characterization with dark-field x-ray microscopy. MRS Bulletin, 41(6), 454–459. https://doi.org/10.1557/mrs.2016.114
[6] Mavrikakis, N., Detlefs, C., Cook, P. K., Kutsal, M., Campos, A. P. C., Gauvin, M., … Yildirim, C. (2019). A multi-scale study of the interaction of Sn solutes with dislocations during static recovery in α-Fe. Acta Materialia, 174. https://doi.org/10.1016/j.actamat.2019.05.021