93HIGHLIGHTS 2020
Resonant nanodiffraction X-ray imaging reveals role of magnetic domains in complex oxide spin caloritronics, P.G. Evans (a), S.D. Marks (a), S. Geprägs (b), M. Dietlein (b,c), Y. Joly (d), M. Dai (a), J. Hu (a), L. Bouchenoire (e,f), P.B. Thompson (e,f), T.U. Schülli (e), M.-I. Richard (e,g), R. Gross (b,c,h), D. Carbone (i) and D. Mannix (d,j), Sci. Adv. 6, 40 (2020); https://doi.org/10.1126/sciadv.aba9351. (a) University of Wisconsin-Madison,
Madison (USA) (b) Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany) (c) Physik-Department, Technische Universität München, Garching (Germany) (d) Université Grenoble Alpes, CNRS, Institut Néel, Grenoble (France) (e) ESRF (f) University of Liverpool, Department of Physics, Liverpool (UK) (g) Aix Marseille Université, CNRS, IM2NP
UMR 7334, Université de Toulon, Marseille (France) (h) Munich Center for Quantum Science and Technology (MCQST), Munich (Germany) (i) MAX IV Laboratory, Lund (Sweden) (j) European Spallation Source, Lund (Sweden)
[1] G.E. Bauer et al., Nat. Mater. 11, 391-399 (2012). [2] K. Uchida et al., Nature 455, 778-781 (2008). [3] S. Geprägs et al., Nat. Commun. 7, 10452 (2016).
PRINCIPAL PUBLICATION AND AUTHORS
REFERENCES
The ability to reveal the coupling between magnetism and crystallographic structure with diffraction is an important distinction from magnetic imaging using X-ray spectroscopy methods. Further investigations using Bragg
ptychography, based on the coherent X-ray imaging approach, will permit the simultaneous reconstruction of magnetic and structural information at the nanometre scale and in 3D.
Fig. 77: a) Nanobeam diffraction maps of Fcir at micrometre length- scales. b) Crystallographic tilt towards the [010] (vertical) direction. c) Integrated diffracted X-ray intensity at the 008 Bragg reflection. The magnetic response to the structural variation in (b) and (c) competes with the development of facets along directions of the lowest domain boundary energy.